Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-15T03:49:08.891Z Has data issue: false hasContentIssue false

A Useful Guide for X-Ray Stress Evaluation (XSE)

Published online by Cambridge University Press:  06 March 2019

Viktor M. Hauk
Affiliation:
Institut für Werkstoffkunde, RWTH Aachen, Q-5100 Aachen, Institut für Werkstoffkunde I, Universität Karlsruhe, D-7500 Karlsruhe, F.R.G.
Eckard Macherauch
Affiliation:
Institut für Werkstoffkunde, RWTH Aachen, Q-5100 Aachen, Institut für Werkstoffkunde I, Universität Karlsruhe, D-7500 Karlsruhe, F.R.G.
Get access

Abstract

This paper summarizes experiences available for the measurement of lattice strains in different materials with different wavelengths to evaluate stresses by means of X-rays. The recommendations given are based on previous statements. Some principles of fundamentals of X-ray physics for the recording of interference lines with Ω and ψ-diffractometers are dealt with. Methods applicable for the determination of the peak position of the interference lines, the assessment of linear and non-linear lattice strain distributions, and tine calculation of stresses are outlined. For iron, aluminium, copper, nickel and titanium the constants for practical X-ray stress evaluation (XSE) and the parameters of measurement are tabled.

Type
II. X-Ray Strain and Stress Determination
Copyright
Copyright © International Centre for Diffraction Data 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Faninger, G., Hauk, V., Macherauch, E. and Wolfstieg, U., Recommendations for the practical use of the X-ray stress evaluation method (for iron base materials) (in German), Harterei-Techn. Mitt. 31:No. 1+2/76 109 (1976).Google Scholar
2. Hauk, V. and Macherauch, E., The suitable performance of X-ray stress evaluations (XSE) (in German), in “Eigenspannungen und Lastspannungen, Moderne Ermittlung-Ergebnisse-Bewertung”, Edited by Hauk, V. and Macherauch, E.j Harterei-Techn. Mitt.-Beiheft Carl Hanser Verlag Munchen Wien:1 (1982). 2a. James, M.R., Cohen, J.B., Study of the precision of X-ray stress analysis, Adv. X-Ray Anal. 20:291 (1977).Google Scholar
3. Macherauch, E. and Wolfstieg, U., A modified diffractometer for X-ray stress measurement, Adv. X-Ray Anal. 20:369 (1977).Google Scholar
4. Sagel, K., Tables for X-ray structure analysis (in German), Springer-Verlag Berlin-Gottingen-Heidelberg:123 (1956).Google Scholar
5. Residual stress measurement by X-ray diffraction, SAE J 784a:(1971).Google Scholar
6. Tonshoff, H.K., E. Brinksmeier and Nolke, H.H., Application of the cross correlation method in the X-ray residual stress measurement (in German), Z. MetalIkde. 72:349 (1981).Google Scholar
7. Wolfstieg, U., The symmetrizing of non symmetrical interference lines using special slits (in German), Harterei-Techn.Mitt. 31 No. 1+ 2/76 23 (1976). 8 . Hauk, V. and Krug, W.K., Computerized separation and symmetrizing of K-doublets in X-ray stress measurements (in German), Material pruf. 25:241 (1983).Google Scholar
9. Hoffmann, J. and Macherauch, E., A new method for strain determination by means of X-rays with continuous registration of line peaks vs. sin2ψ (in German), in 2.:25 (1982).Google Scholar
10. Macherauch, E. and Muller, P., The sin2ψ method of X-ray stress measurement (in German), Z. angew. Physik 13:305 (1961).Google Scholar
11. Hauk, V., Residual stresses after plastic strain by tension (in German), Z. Metallkde. 46:33 (1955).Google Scholar
12. Bollenrath, F., Hauk, V. and Muller, E.H., Calculation of polycrystalline elastic constants from data of single crystals (in German), Z. Metallkde. 58:76 (1967).Google Scholar
13. Hauk, V. and Kockelmann, H., X-ray elastic constants for stress evaluation (in German), “Eigenspannungen”, ISBN 3-88355-2-2 Deutsche Ges. f. Metallkde. Oberursel:241 (1980).Google Scholar
14. Hauk, V., X-ray elastic constants (XEC) (in German), in 2.:49 (1982).Google Scholar
15. Macherauch, E. and Muller, P., Evaluation of X-ray elastic constants of cold-strained Armco-iron and CrMo-steel (in German), Arch. Eisenhiittenwes. 29:257 (1958).Google Scholar
16. Evenschor, P.D. and Hauk, V., On nonlinear distributions of lattice spacings in X-ray strain measurements (in German), Z. Meta:Ikde. 6 6:167 (1975).Google Scholar
17. Dolle, H. and Hauk, V., X-ray stress evaluation of residual stres systems having general orientation (in German), Harterei-Techn. Mitt. 31:165 (1976).Google Scholar
18. Hauk, V., Krug, W.K., G. Vaessen and Weisshaupt, H., The residual strain-/residual stress-state after grinding (in German), Harterei-Techn. Mitt. 35:144 (1980).Google Scholar
19. Hauk, V.M., Oudelhoven, R.W.M. and Vaessen, G.J.H., The state of residual stress in the near surface region of homogeneous and heterogeneous materials after grinding, Metallurg. Trans. 13A:1239 (1982).Google Scholar
20. Hauk, V., Stress evaluation on materials having non-linear lattice strain distributions, Adv. X-Ray Anal. 27:in press (1984)Google Scholar
21. Glocker, R., Materialprufung mit Rontgenstrahlen, Springer-Verlag Berlin-Heidelberg-New York, 5. Auf1.:139 and 434 (1971).Google Scholar
22. Pearson, W.B., A handbook of lattice spacings and structures of tnetals and alloys, Pergamon Press 2:(1967).Google Scholar
23. Landolt-Bornstein, Data and functions (in German), Springer-Verlag Berlin-Gottingen-Heidelberg 1:(1950) and (1955).Google Scholar