Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-18T06:12:49.240Z Has data issue: false hasContentIssue false

X-Ray Diagnostics in the Laser-Initiated Fusion Program*

Published online by Cambridge University Press:  06 March 2019

R. P. Godwin*
Affiliation:
University of California Los Alamos Scientific Laboratory Los Alamos, New Mexico 87545
Get access

Abstract

The high-density and high-temperature plasma conditions required for successful laser-initiated fusion make x-ray diagnostics a valuable tool in this exciting field. Measurements of the hard x-ray bremsstrahlung continuum emitted from laser targets provide insight into the complex laser-plasma coupling physics and the subsequent electronic energy transport. X-ray techniques are important in the selection and assay of microballoon targets for current compression experiments. X-ray imaging experiments and diffraction spectroscopy of highly stripped atoms can provide information about the symmetry, density and temperature of laser targets. Extremely high temporal and spatial resolution may be required for definitive diagnostic information on compressed targets. While laser-produced plasmas are interesting as possible intense x-ray sources and as a possible means of achieving x-ray lasing, those topics are outside the scope of this review.

Type
Laser Analysis
Copyright
Copyright © International Centre for Diffraction Data 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work performed under the auspices of the U.S. Energy Research and Development Administration.

References

1. Boyer, K., “Laser Initiated Fusion,” Astronaut. Aeronaut 11, 28 (1973).Google Scholar
2. Emmett, J. L., Nuckolls, J. and Wood, L., “Fusion Power by Laser Implosion,” Sci. Am., 230, 21 June (1974).Google Scholar
3. Brueckner, K. A. and Jorna, S., “Laser-Driven Fusion,” Rev. Mod. Phys. 46, 325 (1974).Google Scholar
4. Chapline, G. and Wood, L., “X-Ray Lasers,” Phys. Today, Vol. 28. No. 6 June (1975) p. 40.Google Scholar
5. Nagel, D. J., “X-Ray Emission from High Temperature Laboratory Plasmas,” in Pickles, W. L., Barrett, C. S., Newkirk, J. B. and Ruud, C. O., Editors, Advances in X-Ray Analysis, Vol. 18, p. 1, Plenum Press (1975).Google Scholar
6. Violet, C. E., “Instrumentation for X-Ray Diagnostics of Plasmas,” Advances in X-Ray Analysis, Vol. 18, p. 26, Plenum Press (1975).Google Scholar
7. Laser Interaction and Related Plasma Phenomena, Vol. 3, Schwarz, H. J. and Hora, H., Editors, Plenum Press (1974).Google Scholar
8. Mulser, P., Sigel, R. and Witkowski, S., “Plasma Production by Laser,” Phys. Reports (Amsterdam), 6c, 187 (1973).Google Scholar
9. Giovanielli, D. V. and Godwin, R. P., “Optics in Laser-Produced Plasmas,” Am. J. Phys., August (1975).Google Scholar
10. Jackson, J. O., Classical Electrodynamics, Wiley (1962).Google Scholar
11. Cooper, J., “Plasma Spectroscopy,” Reports on Progress in Physics, 29, 35 (1966).Google Scholar
12. Griem, H. R., Plasma Spectroscopy, McGraw-Hill (1964).Google Scholar
13. Stratton, T. S., “X-Ray Spectroscopy” in Huddlestone, R. H. and Leonard, S. L., Editors, Plasma Diagnostic Techniques, Academic Press (1965).Google Scholar
14. Büchl, K., Eidmann, K., Mulser, P., Salzmann, H. and Sigel, R. in Schwarz, H. and Hora, H., Editors, Laser Interaction and Related Plasma Phenomena, Vol. 2, Plenum Press (1972).Google Scholar
15. Shearer, J., Mead, S. W., Petruzzi, J., Rainer, F., Swain, J. E. and Violet, C. E., “Experimental Indications of Plasma Instabilities Induced by Laser Heating,” Phys. Rev. A 6, 764 (1972).Google Scholar
16. Kephart, J. F., Godwin, R. P. and McCall, G. H., “Bremsstrahlung Emission from Laser-Produced Plasmas,” Appl. Phys. Lett. 25, 108 (1974).Google Scholar
17. Cuderman, J. F. and Gilbert, K. M., “Spectral Analysis of X-Rays front Laser-Induced Plasmas,” in Advances in X-Ray Analysis, Vol. 18, p. 159, Plenum Press (1975).Google Scholar
18. Mayer, F. J., Montry, G. R. and Benn, E., “X-Ray Diagnostics Using Thermoluminescent Dosimeters,” in Advances in X-Ray Analysis, Vol. 18, p. 169, Plenum Press (1975).Google Scholar
19. Kephart, J. F. and Giovanielli, D. V., “Spatially Resolved Observation of the Energetic Electrons from a Laser-Produced Plasma,” Bull. Am. Phys. Soc. 19, 886 (1974). Also private communication.Google Scholar
20. Cano, G. L., Brannon, P. J. and Powell, J. E., “Spectral Measurements of Hot Electrons from Laser-Produced Plasmas,” Bull. Am. Phys. Soc. 19, 886 (1974).Google Scholar
21. Eidmann, K. and Sigel, R., “Investigation of the Fast Electrons in a Laser-Produced Plasma by X-Ray Measurements,” 6th European Conf. on Controlled Fusion and Plasma Physics, Vol. 1, Moscow (1973) p. 435.Google Scholar
22. Private communications; Kephart, J. F. and Mitchell, K. (Los Alamos Scientific Laboratory), Slivinsky, V. W. (Lawrence Livermore Laboratory).Google Scholar
23. McCall, G. H., Young, F., Ehler, A. W., Kephart, J. F. and Godwin, R. P., “Neutron Emission from Laser-Produced Plasmas,” Phys. Rev. Lett. 30, 1116 (1973).Google Scholar
24. Ehler, A. W., “High-Energy Ions from a CO2 Laser-Produced Plasma,” J. Appl. Phys. 46, 2464 (1975). While this paper describes CO2 laser experiments similar but less marked effects occur with glass lasers.Google Scholar
25. Godwin, R. P., “Electrons, Ions and Neutrons,” in Schwarz, H. and Hora, H., Editors, Laser Interaction and Related Plasma Phenomena, Vol. 3, Plenum Press (1974).Google Scholar
26. Glasstone, S. and Lovberg, R. H., Controlled Thermonuclear Reactions, Van Nostrand (1960) Chap. 2.Google Scholar
27. Ripin, B. H., Burkhalter, P. G., Young, F. C., McMahon, J. M., Colombant, D. G., Bodner, S. E., Whitlock, R. R., Nagel, D. J., Johnson, D. J., Windsor, N. K., Dozier, C. M., Bleach, R. D., Stamper, J. A. and McLean, E. A., “X-Ray Emission Spectra from High- Power Laser-Produced Plasmas,” Phys. Rev. Lett. 34, 1313 (1975).Google Scholar
28. Slivinsky, V. W., Kornblum, H. N. and Shay, H. D., “Determination of Superthermal Electron Distributions in Laser-Produced Plasmas,” J. Appl. Phys. (In press).Google Scholar
29. Malone, R. C., McCrory, R. L. and Morse, R. L.,“ Indications of Strongly Flux-Limited Electron Thermal Conduction in Laser-Target Experiments,” Phys. Rev, Lett, 34, 721 (1975).Google Scholar
30. Motz, J. W. and Placious, R. C., “Bremsstrahlung Linear Polarization,” Nuovo Cimento XV, 571 (1960).Google Scholar
31. Eidmann, K., “Calculation of Free-Free Radiation from Plasmas with Non-Maxwellian Isotropic or Anisotropic Electron Velocity Distribution,” Plasma Phys. 17, 121 (1975).Google Scholar
32. Godwin, R. P., Kephart, J. F. and McCall, G. H., “Measured Polarization of X Rays from a Laser-Produced Plasma,” Bull. Am. Phys. Soc. 17, 971 (1972).Google Scholar
33. Chandrasekar, S., Hydrodynamic and Hydromagnetic Stability, Oxford (1961).Google Scholar
34. Fries, R. J. and Farnum, E. H., “Laser Target Fabrication - A Status Report,” Los Alamos Scientific Laboratory Report LA-5703-SR (Revised) August 1974.Google Scholar
35. Fries, R. J. and Farnum, E. H., “Nondestructive Fuel Assay of Laser Targets. I. X-Ray Method,” Nucl. Instr. and Meth. 126, 285 (1975).Google Scholar
36. Barrett, H. H., Wilson, D. T., DeMeester, G. D., and Scharfman, H., “Fresnel Zone Plate Imaging in Radiology and Nuclear Medicine,” Seminar Application of Optical Instrumentation in Medicine, Chicago, November (1972).Google Scholar
37. Lieber, A., Benjamin, R., Lyons, P. and Webb, C., “Micro-Channel Plate as a Parallel-Bore Collimator for Soft X-Ray Imaging,” Nucl. Instr. and Meth. 125, 553 (1975).Google Scholar
38. Seward, F. D. and Palmieri, T. M., “A Simple X-Ray Microscope for Photographing Laser-Produced Plasmas,” Rev. Sci. Instrum. 46, 204 (1975).Google Scholar
39. Vaiana, G. S., Krieger, A. S., Petrasso, R., Silk, J. K. and Timothy, A. F., “The X-Ray Spectrographic Telescope,” American Science and Engineering Report ASE-3538. Presented at the Instrumentation in Astronomy Seminar, Tuscon, Arizona, March (1974).Google Scholar
40. “A Technical Proposal for X-Ray Diagnostics of Laser Fusion Plasmas,” American Science and Engineering Report ASE-3698, May (1975). Also Chase, R. C. and Silk, J. K., “An Ellipsoid-Hyperboloid X-Ray Imaging Instrument for Laser-Pellet Diagnostics,” American Science and Engineering Report ASE-3696 (to be published).Google Scholar
41. McCall, G. H. and Morse, R. L., “Target Compression with One Beam,” Laser Focus 10/12, Arizona December (1974).Google Scholar
42. Campbell, P. M., Charatis, G. and Montry, G. R., “Laser-Driven Compression of Glass Microspheres,” Phys. Rev. Lett. 54, 74 (1975).Google Scholar
43. R. R., Johnson and Solomon, D. E., “Thermonuclear Fusion Research with High-Power Lasers,” Research/Development, May (1975) p. 55.Google Scholar
44. Gabriel, A. H. and Jordan, C., “Interpretation of Spectral Intensities from Laboratory and Astrophysical Plasmas,” in McDaniel, E. W. and McDowell, M. R. C., Editors, Case Studies in Atomic Collision Physics II, North-Noiland (1972).Google Scholar
45. Gabriel, A. H., “Dielectronic Satellite Spectra for Highly Charged Heliumlilke Ion Lines,” Mon. Not. Roy. Astro. Soc. 160, 99 (1972).Google Scholar
46. McWhirter, R. W. P., “Spectral Intensities” in Huddlestone, R. H. and Leonard, S. L., Editors, Plasma Diagnostic Techniques, Academic (1965).Google Scholar
47. Wiese, W. L., “Line Broadening,” in Huddlestone, R. H. and Leonard, S. L., Editors, Plasma Diagnostic Techniques, Academic (1965).Google Scholar
48. Doschek, G. A., “The Solar Flare Plasma: Observation and Interpretation,” Space Sci. Rev. 13, 765 (1972).Google Scholar
49. Doschek, G. A., “X-Ray and EUV Spectra of Solar Flares and Laboratory Plasmas,” IAU Symposium: Solary-, X-, and EUV Radiation, Buenos Aires, June (1974) (to be published).Google Scholar
50. Peacock, N. J., Hobby, M. G. and Galanti, M. “Satellite Spectra for Heliumlike Ions in Laser-Produced Plasmas,” J. Phys. B: Atom. Molec. Phys. 6, L298 (1973).Google Scholar
51. Boiko, V. A., Krokhin, O. N., Pikuz, S. A. arid Faenov, A. Y., “Measurement of the Intensity of the 2-10 Ǻ Radiation Emitted by Laser Plasmas…and Determination of the Plasma Electron Temperature,” Sov. Quant, J.. Electron. 4, 1212 (1975).Google Scholar
52. Cowan, R. D., Los Alamos Scientific Laboratory (private communication).Google Scholar
53. Cowan, R. D., “Theoretical Calculation of Atomic Spectra Using Digital Computers,” J. Opt. Soc. Am. 58, 808 (1968).Google Scholar
54. Los Alamos data and private communications from Yaakobi, B. (Rochester) and Slivinsky, V. W. (Lawrence Livermore Laboratory). Also KMS-ERDA Contract AT(49-1)-3758 Part I Appendix Bl, X-Ray Spectra.Google Scholar
55. Bradley, D. J. and New, G. H. C., “Ultrashort Pulse Measurements,” Proc. of I.E.E.E. 62, 313 (1974).Google Scholar
56. Alfano, R. R. and Shapiro, S. L., “Ultrashort Phenomena,” Phys. Today, Vol. 38, No. 7, July (1975) p. 30.Google Scholar
57. McConaghy, C. F. and Coleman, L. W., “Picosecond X-Ray Streak Camera,” Appl. Phys. Letters 25, 268 (1974).Google Scholar
58. Brukhnevitch, G. I., Chevokin, V. K., Kasyanov, Yu. S., Korobkin, V. V., Malyutin, A. A., Prokhorov, A. M., Richardson, M. C., Schelev, M. Ya., and Stepanov, B. M., “Picosecond X-Ray Plasma Radiation Measurements,” Phys. Lett. 51A, 249 (1975).Google Scholar
59. Lieber, A. J., Benjamin, R. F., Sutphin, H. D. and Webb, C. B., “Investigation of Micro-Channel Plates as Parallel-Bore Electron Collimators for Use in a Proximity Focused Ultrafast Streak Tube,” Nucl. Instr. and Meth. (in press).Google Scholar
60. Henke, B. L. and Tester, M. A., “Techniques of Low Energy X-Ray Spectroscopy (0.1 to 2 keV Region),” Advances in X-Ray Analysis, Vol. 18, p. 76, Plenum Press (1975).Google Scholar
61. Stanford Synchrotron Radiation Project Users Handbook, Stanford University (1974).Google Scholar
62. Kaplan, S. A., Pikel'ner, S. B. and Tsytovich, V. N., “Plasma Physics of the Solar Atmosphere,” Phys. Reports (Amsterdam), 15C, 1 (1974).Google Scholar
63. Sheeley, N. R., Bohlin, J. D., Brueckner, G. E., Purcell, J. D., Scherrer, V. E. and Tousey, R., “The Reconnection of Magnetic Field Lines in the Solar Corona,” Naval Research Laboratory (Preprint).Google Scholar
64. Born, M. and Wolf, E., Principles of Optics, Pergamon Press (1964), Chap. 13.Google Scholar
65. Krall, N. A. and Trivelpiece, A. W., Principles of Plasma Physics, McGraw-Hill (1973) Chap. 6.Google Scholar
66. Seitz, F., The Modern Theory of Solids, McGraw-Hill (1940) Chap. 4.Google Scholar