Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-28T20:27:08.687Z Has data issue: false hasContentIssue false

Xrf With Tunable Monochromatic Excitation and Variation of the Incidence Angle

Published online by Cambridge University Press:  06 March 2019

Horst Ebel
Affiliation:
Technische Universität Wien Institut für Angewandte und Technische Physik Wiedner Hauptstraβe 8-10, A 1040 Vienna, AUSTRIA
Maria F. Ebel
Affiliation:
Technische Universität Wien Institut für Angewandte und Technische Physik Wiedner Hauptstraβe 8-10, A 1040 Vienna, AUSTRIA
Robert Svagera
Affiliation:
Technische Universität Wien Institut für Angewandte und Technische Physik Wiedner Hauptstraβe 8-10, A 1040 Vienna, AUSTRIA
Norbert Wirth
Affiliation:
Technische Universität Wien Institut für Angewandte und Technische Physik Wiedner Hauptstraβe 8-10, A 1040 Vienna, AUSTRIA
Roland Kaitna
Affiliation:
Rokappa Laborinstrumente Krichbaumgasse 31, A 1120 Vienna, AUSTRIA
Hartinut Schandl
Affiliation:
Rokappa Laborinstrumente Krichbaumgasse 31, A 1120 Vienna, AUSTRIA
Get access

Extract

The x-ray source of our instrument is a rotating anode system with a silver target. It is flanged to a He-filled monochromator chamber. The photon energy of the x-rays for the excitation of characteristic specimen radiation can be tuned continuously from IkeV to 30 keV. The cross-section of the beam - monochromatic or polychromatic tube radiation - leaving the monochromator chamber is variable within 0.1 and 100mm2. A Be-window separates the evacuable specimen chamber from the monochromator chamber. The specimen holder allows for a linear movement of the specimen in x- and y-direction normal to the beam of incident x-radiation and allows a laterally resolved analysis. A rotation around an axis normal to the incident x-ray beam enables investigations under variable incidence- and take-off angles. X-ray detection is performed by an energy dispersive system.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Criss, J. W. and Birks, L.S., Anal.Chem. 40: 1080, (1968)Google Scholar
2. Mantlet, M., Prog.Crystal Growth and Charact. 14: 213, (1987)Google Scholar
3. Ebel, M. F.,Ebel, H.,Svagera, R.,Heller, M.,Wernisch, J.,and R., Kaitna, X-Ray Spectrometry 22: 300, (1993)Google Scholar
4. Pella, P. A.,Feng, L. Y.,and Small, J.A., X-Ray Spectrometry 14: 125, (1985),Google Scholar
5. Ebel, H.,Wiederschwinger, H.,Wernisch, J.,and Pella, P.A., Adv.in X-Ray Analysis 35: 721, (1992)Google Scholar
6. Ebel, M. F.,and W., Liebl, J.Electron Spectrosc.Relat.Phenomena 16: 463, (1970) .Google Scholar
7. Sherman, J., Spectrochim.Acta 7: 283, (1955).Google Scholar
8. McMaster, W. H.,del Grande, N.K., Mallett, J. H., and Hubbell, J.H., Compilation of X-Ray Cross-Sections, UCRL-50174, Sect. II, Rev.1.Lawrence Radiation Laboratory, University of California, Livermore, CA (1969)Google Scholar