Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T15:35:52.572Z Has data issue: false hasContentIssue false

The proper symbiosis of the human pilot and automatic flight control

Published online by Cambridge University Press:  04 July 2016

K. H. Doetsch*
Affiliation:
Technical University Braunschweig/ DFVLR Braunschweig

Extract

It is indeed a great honour and a particularly pleasing experience for me to have been invited to give the 18th Lanchester Memorial Lecture. Pleasing because it enables me to recall before such a distinguished audience, one of Lanchester's outstanding achievements in the field of aircraft stability, his phugoid theory. This slow oscillation problem has often been neglected but its implications can be vital as the Vulcan crash in 1956 emphasises, and the development of STOL with high lift has forced designers to turn again to a serious consideration of the phugoid as I will show presently in the first part of this lecture.

Type
Eighteenth Lanchester Memorial Lecture
Copyright
Copyright © Royal Aeronautical Society 1975 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lanchester, F. W. Aerial flight, 2 Vols, Constable, London, 1908.Google Scholar
2.50 Jahre Akademische Fliegergruppe Braunschweig e.V. (OSTIV), 1972.Google Scholar
3. Doetsch, K. H. The time vector method for stability investigations. R & M 2945, HMSO, 1956.Google Scholar
4. Howard, R. W. Automatic flight control in fixed wing aircraft—The first 100 years. The Aeronautical Journal of the Royal Aeronautical Society, November 1973.Google Scholar
5. Doetsch, K. H. The place of servo-mechanisms in the design of aircraft with good flight characteristics. AGARD R 360, 1961.Google Scholar
6. McCormick, E. J. Human factors engineering. McGraw-Hill, 1970.Google Scholar
7. Kelley, C. R. Manual and automatic control. John Wiley & Sons, 1968.Google Scholar
8. Kelley, C. R. Manual vs automatic control. Working papers of the advanced study institute on displays and controls. Berchtesgaden, 1971.Google Scholar
9. Benson, A. J. Technical evaluation. The disorientation incident. AGARD CP 95, 1972.Google Scholar
10. Beyer, R. et al. V/STOL displays for approach and landing. AGARD R 594, 1972.Google Scholar
11. Wanner, J.-C. L. Piloting techniques and flying qualities of the next generation of aircraft. The Aeronautical Journal of the Royal Aeronautical Society, December 1973.Google Scholar
12. Wanner, J.-C. L. Presentation des informations necessaires pour le decollage et l'atterisage (take-off and landing). AGARD CP 160, 1975.Google Scholar
13. Anderson, B. D. O. and Moore, J. B. Linear Optimal Control. Prentice Hall, 1971.Google Scholar
14. Doetsch, K. H. and Metzdorff, W. Primary flight control circuit development from mechanical systems to an all-electric digital signalling system. AGARD CP 58, 1970.Google Scholar
15. Onken, R., et al. Digital fly-by-wire control system with self diagnosing failure detection. Advances in Control Systems. AGARD CP 137, 1974.Google Scholar
16. Holle, K.-D. Realisierung der Ausfallerkennung im digitalen Flugregler. DGLR, 1974.Google Scholar
17. Thomas, J. and Schenk, H.-D. Ein Monitordisplay für automatisch geregelte Steilanfliige. DLR-Mitteilung 74-29. ZLDI, 1974.Google Scholar
18. Stuckenberg, N. Entwurf eines Vorgaberegelsystems mit proportional-integralem Regler für den Steilanflug des Flugzeugs HFB 320 Hansa nach der Theorie des optimalen Zustandsreglers. DLR FB 75-19, ZLDI, 1975.Google Scholar