Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-03T10:57:31.505Z Has data issue: false hasContentIssue false

Altering flight stability characteristics of a high-performance aircraft through wing strake modification

Published online by Cambridge University Press:  18 April 2024

H. Raza
Affiliation:
School of Interdisciplinary Engineering and Science (SINES), NUST, Islamabad, Pakistan
A. Maqsood*
Affiliation:
National University of Sciences and Technology, Islamabad, Pakistan
J. Masud
Affiliation:
Air University, Islamabad, Pakistan
*
Corresponding author: A. Maqsood; Email: adnan@sines.nust.edu.pk

Abstract

Changes in flight stability characteristics at the advanced stage of aircraft design are complex and require thorough investigations. This paper examines the impact of wing strake modification on high-performance aircraft using computational fluid dynamics (CFD). The dynamic behaviour is calculated using the forced oscillation technique, while the effect of geometric variation on longitudinal stability characteristics is extensively studied. Steady-state experimental data is utilised to validate the computational setup. Static aerodynamic coefficients, dynamic stability derivatives and the positions of aerodynamic and pressure centres are employed to quantify the changes. Furthermore, the alterations in stability characteristics are correlated with flow physics. The results indicate a reduction in longitudinal static and dynamic stability at various flight conditions due to the proposed modification. This deliberate reduction was necessary to accommodate the installation of a fly-by-wire system. The discussed design changes have been effectively implemented on an in-service aircraft.

Type
Research Article
Copyright
© National University of Sciences and Technology, 2024. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bryan, G.H. Stability in aviation: an introduction to dynamical stability as applied to the motions of aeroplanes, 1911, Macmillan and Company, limited. doi: 10.1038/088406a0 CrossRefGoogle Scholar
Nguyen, L.T. Evaluation of importance of lateral acceleration derivatives in extraction of lateral-directional derivatives at high angles of attack. NASA Technical Note, NASA-TN-D-7739, 1974.Google Scholar
Jones, R.T. and Fehlner, L.F. Transient effects of the wing wake on the horizontal tail. No. NACA-TN-771, 1940. https://ntrs.nasa.gov/citations/19930081625 Google Scholar
Altun, M. and İyigün, İ. Dynamic Stability derivatives of a manuevering combat aircraft model. J. Aeronaut. Space Technol., 2004, 1, (3), pp 1927.Google Scholar
Orlik-Rückemann, K.J. Dynamic stability testing of aircraft—needs versus capabilities. Prog. Aerosp. Sci., 1975, 16, (4), pp 431447. Elsevier. doi: 10.1016/0376-0421(75)90005-6 CrossRefGoogle Scholar
Uselton, B.L. and Uselton, J.C. Test Mechanism for Measuring Pitch-Damping Derivatives of Missile Configurations at High Angles of Attack: Arnold Engineering Development Center Arnold AFB TN, 1975.CrossRefGoogle Scholar
Murman, S. and Aftosmis, M. Dynamic analysis of atmospheric-entry probes and capsules. 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007, p 74. doi: 10.2514/6.2007-74 CrossRefGoogle Scholar
Morton, S., Görtz, S., McDaniel, D. and Dean, J. Computational aircraft and armament stability and control techniques applied to the F-16. Proceedings of the ITEA Store Compatibility Symposium, Destin, Florida, 2006. https://www.cobaltcfd.com/publications/ Google Scholar
Lin, G. Effects of Nonlinear Unsteady Aerodynamics on Performance, Stability and Control of an F-18 Configuration: University of Kansas, 1997. https://www.proquest.com/openview/a6760889780fb981d41936fb4a4ec488/1?pq-origsite=gscholar&cbl=18750&diss=y Google Scholar
Fujii, K. and Schiff, L.B. Numerical simulation of vortical flows over a strake-delta wing. AIAA J., 1989, 27, (9), pp 11531162.CrossRefGoogle Scholar
Lamar, J.E. Analysis and design of strake-wing configurations. J. Aircraft, 1980, 17, (1), pp 2027. doi: 10.2514/3.57870 CrossRefGoogle Scholar
Luckring, J.M. Aerodynamics of strake-wing interactions. J. Aircraft, 1979, 16, (11), pp 756762. doi: 10.2514/3.58600 CrossRefGoogle Scholar
Gursul, I. and Wang, Z. High angle of attack aerodynamics. Encycl. Aerosp. Eng., Wiley Online Library, 2010. https://onlinelibrary.wiley.com/doi/book/10.1002/9780470686652 CrossRefGoogle Scholar
Sedin, Y.C.J., Persson, I., Sillen, M. and Aerosystems, S. Computational analysis and re-design of a wing-strake combination, 24th International congress of the aeronautical science, ICAS 2004. https://www.icas.org/ICAS_ARCHIVE/ICAS2004/ABSTRACTS/008.HTM Google Scholar
Ronch, A.D., Vallespin, D., Ghoreyshi, M. and Badcock, K.J. Evaluation of dynamic derivatives using computational fluid dynamics. AIAA J., 2012, 50, (2), pp 470484.CrossRefGoogle Scholar
Carter, D., Brandt, S., Gsellman, D. and Steffes, J. Effects of wing sweep on stability of a 5th-generation fighter configuration, 2011. doi: 10.2514/6.2011-7037 CrossRefGoogle Scholar
Peyrat-Armandy, A. Les avions de transport modernes & futurs: Teknea, 1997. Amazon.com : 9782877170437.Google Scholar
Maqsood, A., Masud, J. and Mehdi, A. Aerodynamic evaluation of wing-strake modification by higher order panel method. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2007, p 677. https://arc.aiaa.org/doi/abs/10.2514/6.2007-677 CrossRefGoogle Scholar
Masud, J., Malik, B. and Akhtar, S. Analysis of spin characteristics of a high performance aircraft with high alpha Yawing moment asymmetry. AIAA Atmospheric Flight Mechanics Conference, San Diego, CA, USA, 2016, p 1038. https://arc.aiaa.org/doi/abs/10.2514/6.2016-1038 CrossRefGoogle Scholar
Wang, N., Ma, R., Chang, X. and Zhang, L. Numerical virtual flight simulation of Quasi-Cobra maneuver of a fighter aircraft. J. Aircraft, 2021, 58, (1), pp 138152. doi: 10.2514/1.C035687 CrossRefGoogle Scholar
Polhamus, E.C. Predictions of vortex-lift characteristics by a leading-edge suction analogy. J. Aircraft, 1971, 8, (4), pp 193199.CrossRefGoogle Scholar
Schmidt, S. and Newman, D.M. Estimation of dynamic stability derivatives of a generic aircraft. Proceedings of the 17th Australasian Fluid Mechanics Conference 2010, Auckland, New Zealand, 2010, pp 264–267.Google Scholar
Zhao, D. and Wang, J. Stability analysis and design for polynomial nonlinear systems using SOS with application to aircraft flight control. IFAC Proc. Vol., 2008, 41, (2), pp 86848689. Elsevier.CrossRefGoogle Scholar