Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-15T22:39:11.888Z Has data issue: false hasContentIssue false

Analysis of modern fan manufacturing variations and their links to Jet-engine performance

Published online by Cambridge University Press:  09 November 2023

S. Shahpar*
Affiliation:
Innovation Hub, Future Methods, Rolls-Royce Plc, Derby, UK

Abstract

Every manufacturing procedure is subject to tolerance variations. Over the years, a set of key characteristic features (KCF) that can explain the effect of manufacturing variations on the aero-mechanical performance of a fan blade has been devised and monitored to ensure conformality and good performance. The KCFs are derived from a cloud of coordinate measurement machine (CMM) points and are defined on approved engineering drawings for the manufactured part. In this paper, it is demonstrated that some of the traditional, common wisdom KCFs are not adequate to explain the engine performance deviation behaviour on a test bed at the sea-level condition. On the other hand, good correlation is found by analysing a set of engineering parameters drawn from a new inverse-mapping procedure of the CMM data. It is further demonstrated that a deviation measured via CMM or 3D structured light (GOM) data in cold conditions can be translated to a variation in the hot running shape of the blade. Having identified the key blade features, a cheap alternative to modifying the manufacturing procedure is devised to recover the fan performance by optimising its leading-edge shape.

Type
Research Article
Copyright
© Rolls-Royce plc, 2023. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wilson, M.J., Imregun, M. and Sayma, A.I. The effect of stagger variability in gas turbine fan assemblies, J. Turbomach., 2007, 129, pp 404411.10.1115/1.2437776CrossRefGoogle Scholar
Lu, Y., Lad, B., Green, J., Stapelfeldt, S. and Vahdati, M. Effect of geometry variability on transonic fan blade untwist, Int. J. Turbomach. Propul. Power (MDPI), 2019, 4, 24, doi: 10.3390Google Scholar
McAlpine, A., Fisher, M. and Tester, B. ‘Buzz-Saw‘ Noise: a comparison of measurement with prediction, J. Sound Vibr., 2006, 290, pp 12021233.10.1016/j.jsv.2005.05.028CrossRefGoogle Scholar
Gunn, E.J., Brandvik, T., Wilson, M.J. and Maxwell, R. Fan stability with leading edge damage: blind prediction and validation, Proceedings of the ASME GT, GT2021-59495, 2021.10.1115/GT2021-59495CrossRefGoogle Scholar
Goodhand, M.N. and Miller, R.J. The impact of real geometries on three-dimensional separations in compressors, J. Turbomach., 2012, 134 (2), p 021007.10.1115/1.4002990CrossRefGoogle Scholar
Zheng, S., Teng, J., Fan, L. and Qiang, X. The impact of uncertain stagger angle variation on high-pressure compressor rotor performance, GPPS-2017-0045, Proceeding of Shanghai GPPS forum, 2017.10.1115/GT2018-76067CrossRefGoogle Scholar
Lange, A., Voigt, M, Vogeler, K., Schrapp, H., Johann, E. and Gümmer, V. Impact of manufacturing variability and nonaxisymmetry on high-pressure compressor stage performance, J. Eng. Gas Turbines Power, 2012a , 134, (3), p 032504.10.1115/1.4004404CrossRefGoogle Scholar
Lange, A., Voigt, M., Vogeler, K., Schrapp, H., Johann, E. and Gümmer, V. Impact of manufacturing variability on multistage high-pressure compressor performance, J. Eng. Gas Turbines Power, 2012b , 134, (11), p 112601. https://doi.org/10.1115/1.4007167 CrossRefGoogle Scholar
Högner, L., Voigt, P., Nasuf, A., Voigt, M., Meyer, M., Goenaga, F., Berridge, C. and Vogeler, K. Analysis of high-pressure turbine nozzle guide vanes considering geometric variations, ASME GT-Turbo-Expo 2016, 2016. doi: 10.1115/GT2016-57502 CrossRefGoogle Scholar
Shahpar, S. and Lapworth, L. (2003). PADRAM: parametric design and rapid meshing system for turbomachinery optimisation, ASME Turbo Expo, Atlanta, Georgia, GT 2003-38698.10.1115/GT2003-38698CrossRefGoogle Scholar
Shahpar, S. Building digital twins to simulate manufacturing variation, ASME GT-Turbo-Expo GT2020-15263. Virtual Conference, London, 2020.10.1115/GT2020-15263CrossRefGoogle Scholar
Carta, M., Ghisu, T. and Shahpar, S. High-fidelity CFD analysis of in-serviced shrouded high-pressure turbine rotor blades, ASME GT-Turbo-Expo GT2022-82171, Rotterdam, Holland, 2022. Accepted for Journal: https://doi.org/10.1115/1.4055267 CrossRefGoogle Scholar
Hicks, R.M. and Henne, P.A. Wing design by numerical optimization, J. Aircraft, 1978, 15, pp 407412.10.2514/3.58379CrossRefGoogle Scholar
Shahpar, S. SOFT: a new design and optimisation tool for turbomachinery, Evolutionary Methods for Design, Optimisation and Control, Ginnakoglou, K., et al. (Ed) CIMNE, 2002.Google Scholar
Shahpar, S., Polynkin, A.A. and Toropov, V.V. Large scale optimization of transonic axial compressor rotor blades, 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and 4th AIAA Multidisciplinary Design Optimization Specialist Conference, 2008.10.2514/6.2008-2056CrossRefGoogle Scholar
Lopez, D., Shahpar, S. and Ghisu, T. Extending highly loaded axial fan operability range through novel blade design, J. Turbomach., 2022. ASME GT-Turbo-Expo GT2022-81748, Accepted for Journal.10.1115/1.4055350CrossRefGoogle Scholar
Shahpar, S Optimum Asymmetric Leading- and Trailing-Edges for Turbomachinery, Patent filed in the UK Patent Office, 2021.Google Scholar