Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T03:21:42.988Z Has data issue: false hasContentIssue false

Some Problems in Aerodynamics and Their Solution by Electrical Analogy

Published online by Cambridge University Press:  28 July 2016

D. Küchemann
Affiliation:
Royal Aircraft Establishment
S. C. Redshaw
Affiliation:
University of Birmingham

Abstract

Some purely aerodynamical phenomena, which might profitably be investigated by means of electrical analogue computors, are described. No attempt has been made to furnish a complete catalogue of problems but rather to present current issues, the solution of which would aid the development of practical aerodynamics.

Consideration has only been given to those questions which can be solved more suitably by an analogue computor rather than by a digital machine, although the feasibility of partially solving certain of them by the use of an analogue computor, and completing the work with a digital machine, is mentioned.

In scope, the survey includes two and three dimensional aerofoils as well as interference and a number of special problems.

The relative merits of the various forms of analogue computors are not extensively discussed.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 1956

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kirchoff, G. (1845). Über den Durchgang eines elektrischen Stromes durch eine Ebene, insbesondere durch eine kreisförmige. Ann. Phys., Vol. 64, p. 497, 1845.Google Scholar
2. Lazzarino, A. (1923). The Analogy between Hydrodynamic and Electromagnetic Fields. Atti Acad, di Gioenia Catania, Mem. 12, 1923.Google Scholar
3. Relf, E. F. (1924). An Electrical Method of Tracing Stream Lines for the Two-Dimensional Motion of a Perfect Fluid. R. & M. 905, April 1924.Google Scholar
4. Dadda, L. (1951). The Electrolytic Tank of the Centre for the Study of Electrical Analogues. A Survey of its Application. L'Energia Elettrica, Vol. 28, p. 23, 1951.Google Scholar
5. Sander, K. F., Oatley, C. W. and Yates, J. G. (1952). Factors Affecting the Design of an Automatic Electron Trajectory Tracer. Proceedings of Institute of Electrical Engineers, Vol. 99, Pt. 3, No. 60, p. 169, 1952.Google Scholar
6. Pérès, J. and Malavard, L. (1932). Sur les Analogies Électriques en Hydrodynamique. Compt. Rend. Acad. d. Sci., April 1932.Google Scholar
7. Pérès, J. and Malavard, L. (1932). Application de la Methode Électrique à un Problem Concernant l'aile d'Envergure Finie. Compt. Rend. Acad. d. Sci., Oct. 1932.Google Scholar
8. Pérès, J. (1938). Analogy Methods in Applied Mechanics. Fifth Int. Congr. Appl. Mech., Cambridge, Mass., 1938.Google Scholar
9. Malavard, L. (1944). Sur la Solution Rhéoélectrique des questions du Représentation Conforme et Applications à la Theorie des Profils d'Ailes. Compt. Rend. Acad. d. Sci., January 1944.Google Scholar
10. Malavard, L. (1947). The Use of Rheo-Electrical Analogies in Certain Aerodynamical Problems. Journal of the Royal Aeronautical Society, Vol. 51, p. 739, 1947.Google Scholar
11. Schmidt, K. (1943). Über die Experimented Lösung von Zweidimensionalen Potentialproblemen durch Elektrische Dipolfelder. Ingenieur-Archiv., Vol. 14, p. 30, 1943.Google Scholar
12. Einstein, P. A. (1951). Factors Limiting the Accuracy of the Electrolytic Plotting Tanks. Journal of Applied Physics, Vol. 2, p. 49, 1951.Google Scholar
13. Bordon, A., Shelton, G. L. Jr., and Ball, W. E. (1953). An Electrolytic Tank Developed for Obtaining Velocity and Pressure Distributions about Hydrodynamic Forms. U.S. Navy Dept, D.T.M.B. Report No. 824, 1953.Google Scholar
14. Weber, J. (1953). The Calculation of the Pressure Distribution over the Surface of Two-Dimensional and Swept Wings with Symmetrical Aerofoil Sections. Unpublished M.O.S. Report, July 1953.Google Scholar
15. Taylor, G. I. and Sharman, C. F. (1928). A Mechanical Method of Solving Problems of Flow in Compressible Fluids. Proc. Roy. Soc. (A), Vol. 121, p. 194, 1928.Google Scholar
16. Busemann, A. (1937). Hodographenmethode der Gasdynamik. Zeitschrift für angewandte Mathematik und Mechanik, Vol. 17, p. 73, 1937.Google Scholar
17. Vandrey, F. (1944). Untersuchungen über die Behandlung ebener Unterschallströmungen mit Hilfe der elektrischen Analogie. Dissertation Göttingen, 1944. Translation M.O.S. R. & T. No. 807.Google Scholar
18. Kron, G. (1945). Equivalent Circuits of Compressible and Incompressible Fluid Flow Fields. Journal of the Aeronautical Sciences, Vol. 12, p. 221, 1945.Google Scholar
19. Carter, G. K. and Kron, G. (1945). Numerical and Network-analyzer Tests of an Equivalent Circuit for Compressible Fluid Flow. Journal of the Aeronautical Sciences, Vol. 12, p. 232, 1945.Google Scholar
20. Southwell, R. V. (1946). Relaxation Methods in Theoretical Physics. Oxford University Press, 1946.Google Scholar
21. Thom, A. (1953). The Arithmetic of Field Equations. The Aeronautical Quarterly, Vol. 4, pp. 205230, 1953.Google Scholar
22. Preston, J. (1949). The Calculation of Lift Taking Account of the Boundary Layer. R. & M. 2725, November 1949.Google Scholar
23. Spence, D. A. (1952). The Prediction of Characteristics of Two-Dimensional Aerofoils. Journal of the Aeronautical Sciences 21 No. 9, September 1954.Google Scholar
24. Brebner, G. G. and Bagley, J. A. (1952). Pressure and Boundary Layer Measurements on a Two-Dimensional Wing at Low Speed. R. & M. 2886, 1952.Google Scholar
25. Squire, H. B. and Young, A. D. (1937). The Calculation of the Profile Drag on Aerofoils. R. & M. 1838, November 1937.Google Scholar
26. Küchemann, D. (1953). Types of Flow on Swept Wings, with Special Reference to Free Boundaries and Vortex Sheets. Journal of the Royal Aeronautical Society, Vol. 57, p. 683, 1953.Google Scholar
27. Schmieden, C. (1940). Über Tragflügelströmungen mit Wirbelablösung. Luftfahrtforschung, Vol. 17, p. 37, 1940.Google Scholar
28. Walz, A. (1940). Berechnung der Druckverteilung an Klappenprofilen mit Totwasser. Jahrbuch der Deutschen Luftfahrtforschung, 1940, d.d., Luftfahrtforschung, p. I 265, 1940.Google Scholar
29. Woods, L. C. (1953). Theory of Aerofoils on which occur Bubbles of Stationary Air. November 1953. Unpublished report.Google Scholar
30. Küchemann, D. and Weber, J. (1953). Aerodynamics of Propulsion. McGraw-Hill, New York and London, 1953.Google Scholar
31. Matsunaga, S. (1954). A Proposal on the Electric Tank Method for Study of a Symmetrical Aerofoil with a Rear Suction Slot and a Retractable Flap. Journal of the Royal Aeronautical Society, Vol. 58, p. 434, 1954.Google Scholar
32. Küchemann, D. (1954). Some Aerodynamic Properties of a New Type of Aerofoil with Reversed Flow Through an Internal Duct. Unpublished M.O.S. Report, May 1954.Google Scholar
33. Malavard, L. (1939). Étude de Quelques Problèmes Techniques Relevant de la Théorie des Ailes. Application à Leur Solution de la Methode Rhéoélectriques. Publications Scientifiques et Techniques du Ministère de l'Air, No. 153, 1939.Google Scholar
34. Malavard, L. and Duquenne, R. (1951). Études des Surfaces Portantes par Analogies Rhéoélectriques. Rech. Aéron., Vol. 23, 1951.Google Scholar
35. Campbell, W. F. (1949). Two Electrical Analogies for the Pressure Distribution on a Lifting Surface. National Research Council of Canada, Report No. M.A. 219, 1949.Google Scholar
36. Redshaw, S. C. (1951). A Three-Dimensional Electrical Potential Analyser. British Journal Applied Physics, Vol. 2, p. 291, 1951.Google Scholar
37. Redshaw, S. C. (1954). The Determination of the Pressure Distribution over an Aerofoil Surface by Means of an Electrical Potential Analyser. R. & M. 2915, 1954.Google Scholar
38. Jones, W. P. (1948). Aerofoil Oscillations at High Mean Incidences. R. & M. 2654.Google Scholar
39. Brebner, G. G. (1952). The Application of Camber and Twist to Swept Wings in Incompressible Flow. C.P. 171. March 1952.Google Scholar
40. Roper, G. M. (1950). Calculation of the Effect of Camber and Twist on the Pressure Distribution and Drag on Some Curved Plates at Supersonic Speeds. R. & M. 2794, September 1950.Google Scholar
41. Jones, R. T. (1945). Properties of Low-Aspect-Ratio Pointed Wings at Speeds Below and Above the Speed of Sound. N.A.C.A. Report No. 835, May 1945.Google Scholar
42. Falkner, V. M. (1943). The Calculation of Aerodynamic Loading on Surfaces of Any Shape. R. & M. 1910, 1943.Google Scholar
43. Jones, W. P. (1946). Note on Lifting Plane Theory with Special Reference to Falkner's Approximate Method and a Proposed Electrical Device for Measuring Downwash Distributions. R. & M. 2225, 1946.Google Scholar
44. Küchemann, D. (1952). A Simple Method of Calculating the Span and Chordwise Loading on Straight and Swept Wings of any Given Aspect Ratio at Subsonic Speeds. R. & M. 2935, 1952.Google Scholar
45. Glauert, H. (1927). Theoretical Relationship for an Aerofoil with Hinged Hap. R. & M. 1095, 1927.Google Scholar
46. Landahl, M. T. and V. J. E., Stark (1953). An Electrical Analogy for Solving the Oscillating Surface Problem for Incompressible Nonviscid Flow. Swedish K.T.H. Report No. Aero. T.N. 34, Stockholm, 1953.Google Scholar
47. Malavard, L. and Siestrunck, R. (1945). Sur Une Méthode d'Étude des Grilles Indéfinies des Profils Quelconques. Comm. Congr. Nat. de l'Aviation Française, 1945.Google Scholar
48. De Haller, P. (1947). Applications de l'Analogie Électrique à l'Étude des Grilles d'Aubes. Bull. Techn. de la Suisse Romande, Vol. 73, p. 25, 1947.Google Scholar
49. Hargest, T. J. (1949). An Electric Tank for the Determination of Theoretical Velocity Distributions. R. & M. 2699, 1949.Google Scholar
50. Hargest, T. J. (1950). The Theoretical Pressure Distribution Around Some Conventional Turbine Blades in Cascade. R. & M. 2765, March 1950.Google Scholar
51. Revuz, J. (1954). Families de Profiles d'Ailettes Pour Compresseurs Axiaux. La Rech. Aeronautique, No. 37, p. 11, 1954.Google Scholar
52. Weber, J., Kirby, D. A. and Kettle, D. J. (1951). An Extension of Multhopp's Method of Calculating the Spanwise Loading of Wing-Fuselage Combinations. R. & M. 2872, 1951.Google Scholar
53. Spreiter, J. R. (1949). Aerodynamic Properties of Cruciform Wing and Body Combinations at Subsonic, Transonic and Supersonic Speeds. N.A.C.A. T.N. 1897, June 1949.Google Scholar
54. Adams, M. C. and Sears, W. R. (1953). Slender Body Theory. Review and Extension. Journal of the Aeronautical Sciences, Vol. 20, p. 85, 1953.Google Scholar
55. Hartley, D. E. (1952). Theoretical Load Distributions on Wings with Cylindrical Bodies at the Wing Tips. A.R.C. Current Paper No. 147, June 1952.Google Scholar
56. Owen, P. R. and Maskell, E. C. (1951). Interference Between the Wings and the Tailplane of a Slender Wing-Body-Tailplane Combination. Unpublished M.O.S. Report, October 1951.Google Scholar
57. Owen, P. R. and Anderson, R. G. (1952). Interference Between the Wings and the Tail Surfaces of a Combination of Slender Body, Cruciform Wings and Cruciform Tail Set at Both Incidence and Yaw. Unpublished M.O.S. Report, June 1952.Google Scholar
58. Weber, J. (1952). Theoretical Load Distribution on a Wing with a Cylindrical Body at one End. R. & M. 2889, June 1952.Google Scholar
59. Weber, J. and Hawk, A. C. (1954). Theoretical Load Distributions on Fin-Body-Tailplane Arrangements in a Sidewind. To be published R. & M.Google Scholar
60. Falkner, V. M. and Gandy, R. W. (1946). Notes on the Use of an Electric Tank for the Solution of Wing Loading Problems. Unpublished Report, 1946.Google Scholar
61. Küchemann, D. and Kettle, D. J. (1951). The Effect of Endplates on Swept Wings. June 1951. Current Paper No. 104.Google Scholar
62. Mangler, W. (1944). Lift Distribution Around Aerofoils with Endplates. A.R.C. Translation No. 8237, December 1944.Google Scholar
63. Ward, G. N. (1949). Supersonic Flow Past Slender Pointed Bodies. Quarterly Journal of Mechanics and Applied Mathematics, Vol. 2, p. 76, 1949.Google Scholar
64. Weber, J. (1954). The Calculation of the Pressure Distribution of Thick Wings of Small Aspect Ratio at Zero Lift in Subsonic Flow. To be published R. & M.Google Scholar
65. Siestrunck, R. (1944). Sur un Mode de Solution Rhéoélectrique des Problèmes de l'Hèlice Propulsive. Compt. Rend. Acad. d. Sci., Vol. 219, p. 411, 1944.Google Scholar
66. Concordia, C. and Carter, G. K. (1947). D.C. Network-Analyser Determination of Fluid Flow Pattern in a Centrifugal Impeller. Journal of Applied Mechanics, Vol. 14, p. 113, 1947.Google Scholar
67. Pérès, J. and Malavard, L. (1945). Sur la Determination des Corrections de Soufflerie. Compt. Rend. Acad. d. Sci., Vol. 221, p. 329, 1945.Google Scholar
68. Babister, A. W., Marshall, W. S. D., Lilley, G. M., Sills, E. C., Deards, S. R. (1951). The Use of a Potential Flow Tank for Testing Axi-Symmetric Contraction Shapes Suitable for Wind Tunnels. Cranfield Report No. 46, April 1951.Google Scholar
69. Hubbard, P. G. (1949). Application of the Electrical Analogy in Fluid Mechanics Research. The Review of Scientific Instruments, Vol. 20, No. 11, p. 802, 1949.Google Scholar
70. Cheers, F., Raymer, W. G., Fowler, R. G. (1945). Preliminary Tests on Electric Potential Flow Apparatus. R. & M. 2205, 1945.Google Scholar
71. Lewis, W. T. O. and Newman, E. J. E. (1945). The Development of a Diffuser Outline Having Specific Velocity Distribution Characteristics by Means of the Potential Flow Apparatus. Bristol Aeroplane Co. Report No. KR.76/45, 1945.Google Scholar
72. Cheers, F. and Raymer, W. G. (1946). Tests in the N.P.L. Electric Tank on a 4 : 1 Axi-Symmetrical Diffuser Having a Discontinuity in the Wall Velocity. Unpublished Report, 1946.Google Scholar
73. Lewis, W. T. O. and Newman, E. J. (1944). Investigations into the Flow Over Cowlings for Radial Aero Engines using Potential Flow Apparatus. Bristol Aeroplane Co. Report No. KR.66/44, July 1944.Google Scholar
74. Lewis, W. T. O. (1945). Flow Over Cowlings. Unpublished Report, 1945.Google Scholar
75. Hahnemann, H. and Bammert, K. (1946). Tests in an Electrolytic Tank on a Ramming and Non-Ramming Air Intake for a Gas Turbine Power Plant. M.O.S. Völkenrode Mon. XI, 2; R. & T. 182, 1946.Google Scholar
76. Puppini, U. (1922). Lining of Artesian Wells Studied by Means of Electric Models. Reale Acad. Sci., Bologna, 1922.Google Scholar
77. Pawlowsky, N. N. (1922). Theory of the Movement of Filtering Water Under Hydraulic Structures. Leningrad, 1922.Google Scholar
78. Ram, G., Vaidhianathan, V. I. and Taylor, J. (1935). Potential Distribution in Infinite Conductors and Uplift under Dams and Weirs. Proceedings Indian Academy of Sciences, Vol. 2, p. 6, 1935.Google Scholar
79. Gentilini, B. (1946). The Method of Electrical Analogy and Some Recent Applications. L'Energia Elettrica, Vol. 23, p. 177, 1946.Google Scholar
80. Dolcetta, A. (1949). Apparatus for the Experimental Solution of Hydrodynamic Problems by the Method of Electrical Analogy. L'Energia Elettrica, Vol. 26, p. 461, 1949.Google Scholar
81. Mccann, G. D. Jr. and Wilts, C. H. (1949). Application of Electric-Analogue Computers to Heat-Transfer and Fluid-Flow Problems. Journal of Applied Mechanics, Vol. 16, p. 247, 1949.Google Scholar
82. Swenson, G. W. and Higgins, T. J. (1952). A Direct-Current Network Analyser for Solving Wave-Equation Boundary-Value Problems. Journal of Applied Physics, Vol. 23, p. 126, 1952.Google Scholar
83. Stenstrom, L. (1950). The Saab Gradient Tank. Saab Sonics, Vol. 12, p. 18, 1950.Google Scholar