A general constraint-based formulation for the analysis and partial synthesis of two-dimensional truss structures is presented. This formulation is general in that it handles statically determinate and statically indeterminate trusses with pin and roller supports, and concentrated joint loads. The formulation is constraint-based in that the physical behavior of truss components is declaratively represented using constraints.
The analysis and partial synthesis of a truss structure manifest themselves in proving the satisfiability of the constraints associated with the structural components. An artificial intelligence approach called constraint logic programming is used for representing and satisfying constraints. A constraint logic programming language, called CLP(R), is used for implementing the formulation. The implemented program consists of sixteen rules. These rules are used for both the analysis and partial synthesis of truss structures. Several truss analysis and synthesis examples using the formulation are presented.