Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-17T11:18:30.473Z Has data issue: false hasContentIssue false

Conservation of animal genetic resources: approaches and technologies for in situ and ex situ conservation

Published online by Cambridge University Press:  01 August 2011

J.A. Woolliams
Affiliation:
Roslin Institute (Edinburgh), Roslin, Midlothian, EH25 9PS, United Kingdom
O. Matika
Affiliation:
Roslin Institute (Edinburgh), Roslin, Midlothian, EH25 9PS, United Kingdom
J. Pattison
Affiliation:
Centre for African Studies, University of Edinburgh, School of Social and Political Studies, University of Edinburgh, 21 George Street, Edinburgh EH8 9LL, United Kingdom
Get access

Summary

Livestock production faces major challenges through the coincidence of major drivers of change, some with conflicting directions. These are:

1. An unprecedented global change in demands for traditional livestock products such as meat, milk and eggs.

2. Large changes in the demographic and regional distribution of these demands.

3. The need to reduce poverty in rural communities by providing sustainable livelihoods.

4. The possible emergence of new agricultural outputs such as bio-fuels making a significant impact upon traditional production systems.

5. A growing awareness of the need to reduce the environmental impact of livestock production.

6. The uncertainty in the scale and impact of climate change. This paper explores these challenges from a scientific perspective in the face of the large-scale and selective erosion of our animal genetic resources, and concludes thai there is a stronger and more urgent need than ever before to secure the livestock genetic resources available to humankind through a comprehensive global conservation programme.

Résumé

La production animale se trouve face à des défis importants dus à la coïncidence de différents facteurs de changements, certains en évident conflit par rapport à leur orientation. C'est-à-dire:

1. Changement sans précédent de la demande au niveau mondial de produits traditionnels tels que la viande, le lait et les œufs.

2. Changements importants dans la distribution démographique et géographique de la demande.

3. Le besoin de réduire la pauvreté dans les communautés rurales en offrant un moyen d'existence durable.

4. L'émergence due à la possibilité de nouveaux produits de l'agriculture tels que le combustible biologique qui a un impact significatif sur les systèmes traditionnels de production.

5. Une majeure considération de la nécessité de réduire l'impact environnemental dû à la production animale.

6. L'incertitude sur le niveau et l'impact du changement climatique. Cet article étudie les défis du point de vue scientifique dans le cas d'une érosion sélective des ressources génétiques animales à large échelle. En conclusion, il existe plus que par le passé l'urgence d'assurer la disponibilité des ressources génétiques animales pour l'utilisation humaine à travers un programme mondial de conservation.

Resumen

La producción ganadera se enfrenta con importantes desafíos debido a la coincidencia de varios factores de cambio, algunos de los cuales en claro conflicto con respecto a su orientación. Estos son:

1. Un cambio sin precedentes en la demanda a nivel mundial de productos tradicionales tales come la carne, la leche y los huevos.

2. Importantes cambios en la distribución demográfica y geográfica de la demanda.

3. La necesidad de reducir la pobreza en las comunidades rurales ofreciendo una renta sostenible.

4. La emergencia debido a la posibilidad de nuevos productos de la agricultura tales como el combustible biológico que tienen un impacto significativo sobre los sistemas tradicionales de producción.

5. Una mayor conciencia de la necesidad de reducir el impacto ambiental debido a la producción ganadera.

6. La incertidumbre sobre el nivel y el impacto del cambio climático. Este artículo estudia estos desafíos desde un punto de vista científico en el caso de una amplia escala y erosión selectiva de los recursos zoogenéticos. En conclusión, existe más que nunca una fuerte y mayor urgencia de asegurar la disponibilidad de recursos zoogenéticos para uso humano a través un programa mundial de conservación.

Type
Research Articles
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

List of references

Boettcher, P.J., Stella, A., Pizzi, F. & Gandini, G. 2005. The combined use of embryos and semen for cryogenic conservation of mammalian livestock genetic resources. Genetics Selection Evolution, 37: 657675.CrossRefGoogle ScholarPubMed
Bryson, B. 2005. A short history of nearly everything. New York, USA, Broadway Books.Google Scholar
Cundiff, L.V., Mac Neil, M.D., Gregory, K.E. & Koch, R.M. 1986. Between and within-breed genetic analysis of calving traits, and survival to weaning in beef cattle. Journal of Animal Science, 63: 2733.CrossRefGoogle ScholarPubMed
Dorward, A., Kydd, J., Morrison, J. & Poulton, C. 2005. Institutions, markets and economic co-ordination: Linking development policy to theory and praxis. Development and Change, 36: 125.CrossRefGoogle Scholar
Eding, H. & Bennewitz, J. 2007. Measuring genetic diversity in farm animals. In Oldenbroek, K., (Ed.). Utilisation and conservation of farm animal genetic resources. Wageningen, the Netherlands, Wageningen Academic Publishers, pp. 232.Google Scholar
ERFP. 2004. Guidelines for the constitution of national cryopreservation programmes for farm animals, edited by S-J Hiemstra. Publication No. 1 of the European Regional Focal Point on Animal Genetic Resources. (also available at www.rfp-europe.org/files/file00244.pdf).Google Scholar
FAO. 1998a. Secondary Guidelines for Development of National Farm Animal Genetic Resources Management Plans. Management of Small Populations at Risk. Rome.Google Scholar
FAO. 1998b. New developments in biotechnology and their implications for the conservation of farm animal genetic resources: reversible DNA quiescence and somatic cell cloning. Report on a joint workshop of FAO and Istituto Sperimentale per la Zootechnia Monterotondo. Rome.Google Scholar
FAO. 2007a. The State of the World's Animal Genetic Resources for Food and Agriculture, edited by Rischkowsky, B. & Pilling, D.. Rome, (also available at http://www.fao.org/docrep/010/a1250e/a1250e00.htm), pp. 511.Google Scholar
FAO. 2007b. Global Plan of Action for Animal Genetic Resources. Rome.Google Scholar
Gandini, G. & Oldenbroek, K. 2007. Strategies for moving from conservation to utilization. In Oldenbroek, K., ed. Utilisation and conservation of farm animal genetic resources, pp. 2954. Wageningen, the Netherlands, Wageningen Academic Publishers, pp. 232.CrossRefGoogle Scholar
Gandini, G.C., Ollivier, L., Danell, B., Distl, O., Georgoudis, A., Groeneveld, E., Martyniuk, E., van Arendonk, J.A.M. & Woolliams, J.A. 2004. Criteria to assess the degree of endangerment of livestock breeds in Europe. Livestock Production Science, 91: 173182.CrossRefGoogle Scholar
Gibson, J., Gamage, S., Hanotte, O., Iñiguez, L., Maillard, J.C., Rischkowsky, B., Semambo, D. & Toll, J. 2006. Options and strategies for the conservation of farm animal genetic resources. Report of an International Workshop (7-10 November 2005, Montpellier, France). Rome, CGIAR System-wide Genetic Resources Programme (SGRP)/Bioversity International, pp. 53.Google Scholar
Groeneveld, E. 2005. A world wide emergency programme for the creation of national genebanks of endangered breeds in animal agriculture. Animal Genetic Resources Information Bulletin 36: 16.CrossRefGoogle Scholar
IPCC. 2007: Summary for policymakers. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. & Miller, H.L., (Eds). Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA, Cambridge University Press.Google Scholar
Meuwissen, T.H.E. 2007. Operation of conservation schemes. In Oldenbroek, K., ed. Utilisation and conservation of farm animal genetic resources, pp. 167193. Wageningen, the Netherlands, Wageningen Academic Publishers, pp. 232.CrossRefGoogle Scholar
Reed, D.H. & Frankham, R. 2001. How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution, 55: 10951103.Google ScholarPubMed
Roughsedge, T., Villanueva, B. & Woolliams, J.A. 2006. Determining the relationship between restorative potential and size of a gene bank to alleviate the risks inherent in a scrapie eradication breeding programme. Livestock Science, 100: 231241.CrossRefGoogle Scholar
Thornton, P.K., Jones, P.G., Owiyo, T., Kraska, R.L., Herrero, M., Kristjanson, P., Notenbaert, A., Bekele, N. & Omolo, A., with contributions from Orindi, V., Ochieng, A., Otiende, B., Bhadwal, S., Anantram, K., Nair, S., Kumar, V. & Kelkar, U. 2006. Mapping climate vulnerability and poverty in Africa. Report to the Department for International Development. Nairobi International Livestock Research Institute (ILRI). 200 pp. (also available at www.dfid.gov.uk/research/mapping-climate.pdf).Google Scholar
Wilmut, L., Schnieke, A.E., McWhir, J., Kind, A.J. & Campbell, K.H.S. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature, 385: 810813.CrossRefGoogle ScholarPubMed
Woolliams, J.A. & Wilmut, I. 1999. New advances in cloning and their potential impact on genetic variation in livestock. Animal Science, 68: 245256.CrossRefGoogle Scholar
Woolliams, J.A. 2007. Genetic contributions and inbreeding. In Oldenbroek, K., ed. Utilisation and conservation of farm animal genetic resources, pp. 147165. Wageningen, the Netherlands, Wageningen Academic Publishers, pp. 232.CrossRefGoogle Scholar