Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-08-04T03:18:29.092Z Has data issue: false hasContentIssue false

Immunity to bovine herpesvirus 1: II. Adaptive immunity and vaccinology

Published online by Cambridge University Press:  26 June 2013

Randall L. Levings*
Affiliation:
Emergency Management and Diagnostics, Veterinary Services, Animal and Plant Health Inspection Service, 1800 Dayton Avenue, Ames, IA 50010, USA
James A. Roth
Affiliation:
Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
*
*Corresponding author. E-mail: Randall.L.Levings@aphis.usda.gov

Abstract

Bovine herpesvirus 1 (BHV-1) infection is widespread and causes a variety of diseases. Although similar in many respects to the human immune response to human herpesvirus 1, the differences in the bovine virus proteins, immune system components and strategies, physiology, and lifestyle mean the bovine immune response to BHV-1 is unique. The innate immune system initially responds to infection, and primes a balanced adaptive immune response. Cell-mediated immunity, including cytotoxic T lymphocyte killing of infected cells, is critical to recovery from infection. Humoral immunity, including neutralizing antibody and antibody-dependent cell-mediated cytotoxicity, is important to prevention or control of (re-)infection. BHV-1 immune evasion strategies include suppression of major histocompatibility complex presentation of viral antigen, helper T-cell killing, and latency. Immune suppression caused by the virus potentiates secondary infections and contributes to the costly bovine respiratory disease complex. Vaccination against BHV-1 is widely practiced. The many vaccines reported include replicating and non-replicating, conventional and genetically engineered, as well as marker and non-marker preparations. Current development focuses on delivery of major BHV-1 glycoproteins to elicit a balanced, protective immune response, while excluding serologic markers and virulence or other undesirable factors. In North America, vaccines are used to prevent or reduce clinical signs, whereas in some European Union countries marker vaccines have been employed in the eradication of BHV-1 disease.

Type
Review Article
Creative Commons
This is a work of the U.S. Government and is not subject to copyright protection in the United States.
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, M and Engels, M (2006). Pro and contra IBR-eradication. Veterinary Microbiology 113: 293302.CrossRefGoogle ScholarPubMed
Amadori, M, Archetti, IL, Verardi, R and Berneri, C (1995). Role of a distinct population of bovine gamma delta T cells in the immune response to viral agents. Viral Immunology 8: 8191.CrossRefGoogle ScholarPubMed
Ambagala, APN, Gopinath, RS and Srikumaran, S (2004). Peptide transport activity of the transporter associated with antigen processing (TAP) is inhibited by an early protein of equine herpesvirus-1. Journal of General Virology 85: 349353.Google Scholar
Anon (2011a). Cattle death loss. [Available online at http://www.nass.usda.gov/Publications/Todays_Reports/reports/catlos11.pdf (Last accessed March 24, 2013)].Google Scholar
Anon (2011b). Veterinary biologics notice number 78. Veterinary biological products in licensed establishments produced and destroyed January 1, 2010 through December 31, 2010. [Available online at http://www.aphis.usda.gov/animal_health/vet_biologics/publications/notice_11_78.pdf (Last accessed October 26, 2012)].Google Scholar
Babiuk, LA, Wardley, RC and Rouse, BT (1975). Defense mechanisms against bovine herpesvirus: relationship of virus-host cell events to susceptibility to antibody-complement cell lysis. Infection and Immunity 12: 958963.CrossRefGoogle ScholarPubMed
Babiuk, LA, L'Italien, J, van Drunen Littel-van den, Hurk S, Zamb, T, Lawman, MJP, Hughes, G and Gifford, GA (1987). Protection of cattle from bovine herpesvirus type I (BHV-1) infection by immunization with individual viral glycoproteins. Virology 159: 5766.CrossRefGoogle ScholarPubMed
Babiuk, LA, van Drunen Littel-van den, Hurk S and Tikoo, SK (1996). Immunology of bovine herpesvirus 1 infection. Veterinary Microbiology 53: 3142.CrossRefGoogle ScholarPubMed
Baldwin, CL, Sathiyaseelan, T, Rocchi, M and McKeever, D (2000). Rapid changes occur in the percentage of circulating bovine WC1(+) γδ Th1 cells. Research in Veterinary Science 69: 175180.CrossRefGoogle Scholar
Baranowski, E, Keil, G, Lyaku, J, Rijsewijk, FA, van Oirschot, JT, Pastoret, PP and Thiry, E (1996). Structural and functional analysis of bovine herpesvirus 1 minor glycoproteins. Veterinary Microbiology 53: 91101.CrossRefGoogle ScholarPubMed
Bauer, D and Tampé, R (2002). Herpes viral proteins blocking the transporter associated with antigen processing TAP–from genes to function and structure. Current Topics in Microbiology and Immunology 269: 8799.Google ScholarPubMed
Baxter, R, Craigmile, SC, Haley, C, Douglas, AJ, Williams, JL and Glass, EJ (2009). BoLA-DR peptide binding pockets are fundamental for foot-and-mouth disease virus vaccine design in cattle. Vaccine 28: 2837.CrossRefGoogle ScholarPubMed
Beer, M (2012). Infectious bovine rhinotracheitis/infectious pustular vulvovaginitis. Chapter 2.4.13 In: Steven, Edwards (ed.) Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2012. Paris, France: World Organisation for Animal Health. [Available online at http://www.oie.int/international-standard-setting/terrestrial-manual/access-online/ Last accessed 6 June 2012].Google Scholar
Belknap, EB, Walters, LM, Kelling, C, Ayers, VK, Norris, J, McMillen, J, Hayhow, C, Cochran, M, Reddy, DN, Wright, J and Collins, JK (1999). Immunogenicity and protective efficacy of a gE, gG and US2 gene-deleted bovine herpesvirus-1 (BHV-1) vaccine. Vaccine 17: 22972305.CrossRefGoogle Scholar
Blumerman, SL, Herzig, CT, Rogers, AN, Telfer, JC and Baldwin, CL (2006). Differential TCR gene usage between WC1- and WC1+ ruminant γδ T cell subpopulations including those responding to bacterial antigen. Immunogenetics 58: 680692.CrossRefGoogle ScholarPubMed
Bonilla, FA and Oettgen, HC (2010). Adaptive immunity. Journal of Allergy and Clinical Immunology 125 (suppl. 2): S33S40.Google Scholar
Brown, WC, Rice-Ficht, AC and Estes, DM (1998). Bovine type 1 and type 2 responses. Veterinary Immunology and Immunopathology 63: 4555.CrossRefGoogle ScholarPubMed
Bryan, LA, Fenton, RA, Misra, V and Haines, DM (1994). Fatal, generalized bovine herpesvirus type-I infection associated with a modified-live infectious bovine rhinotracheitis parainfluenza-3 vaccine administered to neonatal calves. Canadian Veterinary Journal 35: 223228.Google Scholar
Bunnell, BA and Morgan, RA (1998). Gene therapy for infectious diseases. Clinical Microbiology Reviews 11: 4256.CrossRefGoogle ScholarPubMed
Butler, JE (1995). Antigen receptors, their imrnunomodulation and the imrnunoglobulin genes of cattle and swine. Livestock Production Science 42: 105121.CrossRefGoogle Scholar
Butler, JE (1997). Immunoglobulin gene organization and the mechanism of repertoire development. Scandanavian Journal of Immunology 45: 455462.CrossRefGoogle ScholarPubMed
Campos, M, Bielefeidt Ohmann, H, Hutchings, D, Rapin, N and Babiuk, LA (1989). Role of interferon gamma in inducing cytotoxicity of peripheral blood mononuclear leukocytes to bovine herpesvirus type 1 (BHV-l)-infected cells. Cellular Immunology 120: 259269.CrossRefGoogle Scholar
Campos, M, Godson, DL, Hughes, HPA and Babiuk, LA (1994). Cytokine applications in infectious diseases. In: Goddeeris, B and Morrisons, I (eds) Cell-Mediated Immunity in Ruminants. Boca Raton, FL: CRC Press, pp. 229240.Google Scholar
Caselli, E, Boni, M, Di Luca, D, Salvatori, D, Vita, A and Cassai, E (2005). A combined bovine herpesvirus 1 gB-gD DNA vaccine induces immune response in mice. Comparative Immunology, Microbiology and Infectious Diseases 28: 155166.CrossRefGoogle ScholarPubMed
Castrucci, G, Ferrari, M, Marchini, C, Salvatori, D, Provinciali, M, Tosini, A, Petrini, S, Sardonini, Q, Lo Dico, M, Frigeri, F and Amici, A (2004). Immunization against bovine herpesvirus-1 infection. Preliminary tests in calves with a DNA vaccine. Comparative Immunology, Microbiology and Infectious Diseases 27: 171179.CrossRefGoogle ScholarPubMed
Cavignac, Y and Esclatine, A (2010). Herpesviruses and autophagy: catch me if you can! Viruses 2: 314333.Google Scholar
Chase, CCL, Carter-Allen, K, Lohff, C and Letchworth, GJ III (1990). Bovine cells expressing bovine herpesvirus 1 (BHV-1) glycoprotein IV resist infection by BHV-1, herpes simplex virus, and pseudorabies virus. Journal of Virology 64: 48664872.CrossRefGoogle ScholarPubMed
Chen, C, Herzig, CTA, Telfer, JC and Baldwin, CL (2009). Antigenic basis of diversity in the γδ T cell co-receptor WC1 family. Molecular Immunology 46: 25652575.CrossRefGoogle ScholarPubMed
Chentoufi, AA, Kritzer, E, Tran, MV, Dasgupta, G, Lim, CH, Yu, DC, Afifi, RE, Jiang, X, Carpenter, D, Osorio, N, Hsiang, C, Nesburn, AB, Wechsler, SL and BenMohamed, L (2011). The herpes simplex virus 1 latency-associated transcript promotes functional exhaustion of virus-specific CD8+ T cells in latently infected trigeminal ganglia: a novel immune evasion mechanism. Journal of Virology 85: 91279138.Google Scholar
Chowdhury, SI (1996). Construction and characterization of an attenuated bovine herpesvirus type 1 (BHV-1) recombinant virus. Veterinary Microbiology 52: 1323.Google Scholar
Ciabattini, A, Pettini, E, Fiorino, F, Prota, G, Pozzi, G and Medaglini, D (2011). Distribution of primed T cells and antigen-loaded antigen presenting cells following intranasal immunization in mice. Public Library of Science One 6: e19346. doi:10.1371/journal.pone.0019346.Google ScholarPubMed
Cochran, MD (1998). Recombinant infectious bovine rhinotracheitis virus s-ibr-052 and uses thereof. European Patent 0745133 A4.Google Scholar
Cochran, MD, Shih, M-F, MacConnell, WP and Macdonald, RD (2000). Recombinant herpesvirus of turkeys comprising a foreign DNA inserted into a non-essential region of the herpesvirus of turkeys genome. U.S. Patent 6,121,043.Google Scholar
Cochran, MD, Wild, MA and Winslow, BJ (2001). Recombinant chimeric virus and uses thereof. U.S. Patent 6,183,753.Google Scholar
Collen, T and Morrison, WI (2000). CD4_ T-cell responses to bovine viral diarrhoea virus in cattle. Virus Research 67: 6780.CrossRefGoogle ScholarPubMed
Connelley, T, MacHugh, ND, Burrells, A and Morrison, WI (2008). Dissection of the clonal composition of bovine αβ T cell responses using T cell receptor Vβ subfamily-specific PCR and heteroduplex analysis. Journal of Immunological Methods 335: 2840.CrossRefGoogle ScholarPubMed
Coussens, PM, Sipkovsky, S, Murphy, B, Roussey, J and Colvin, CJ (2012). Regulatory T cells in cattle and their potential role in bovine paratuberculosis. Comparative Immunology, Microbiology and Infectious Diseases 35: 233239.Google Scholar
Cox, GJM, Zamb, TJ and Babiuk, LA (1993). Bovine herpesvirus 1: immune responses in mice and cattle injected with plasmid DNA. Journal of Virology 67: 56645667.CrossRefGoogle ScholarPubMed
Cummins, JM, Hutcheson, DP, Cummins, MJ, Georgiades, JA and Richards, AB (1993). Oral therapy with human interferon alpha in calves experimentally injected with infectious bovine rhinotracheitis virus. Archivum Immunologiae Et Therapiae Experimentalis 41: 193197.Google ScholarPubMed
Curtsinger, JM and Mescher, MF (2010). Inflammatory cytokines as a third signal for T cell activation. Current Opinion in Immunology 22: 333340.CrossRefGoogle ScholarPubMed
Curtsinger, JM, Schmidt, CS, Mondino, A, Lins, DC, Kedl, RM, Jenkins, MK and Mescher, MF (1999). Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. Journal of Immunology 162: 32563262.CrossRefGoogle ScholarPubMed
Czerkinsky, C and Holmgren, J (2012). Mucosal delivery routes for optimal immunization: targeting immunity to the right tissues. Current Topics in Microbiology and Immunology 354: 118.Google Scholar
Dargan, DJ, Patel, AH and Subak-Sharpe, JH (1995). PREPs: herpes simplex virus type 1-specific particles produced by infected cells when viral DNA replication is blocked. Journal of Virology 69: 49244932.CrossRefGoogle ScholarPubMed
Davis, WC and Hamilton, MJ (1998). Comparison of the unique characteristics of the immune system in different species of mammals. Veterinary Immunology and Immunopathology 63: 713.CrossRefGoogle ScholarPubMed
Denis, M, Slaoui, M, Keil, G, Babiuk, LA, Ernst, E, Pastoret, P-P and Thiry, E (1993). Identification of different target glycoproteins for bovine herpes virus type 1-specific cytotoxic T lymphocytes depending on the method of in vitro stimulation. Immunology 78: 713.Google Scholar
Denis, M, Splitter, G, Thiry, E, Pastoret, PP and Babiuk, LA (1994). Infectious bovine rhinotracheitis (bovine herpesvirus 1): helper T cells, cytotoxic T cells, and NK cells. In: Goddeeris, BML and Morrison, WI (eds) Cell-Mediated Immunity in Ruminants. Boca Raton, FL: CRC Press, pp. 157172.Google Scholar
Denis, M, Hanon, E, Rijsewijk, FAM, Kaashoek, MJ, van Oirschot, JT, Thiry, E and Pastoret, P-P (1996). The role of glycoproteins gC, gE, gI and gG in the induction of cell-mediated immune responses to bovine herpesvirus 1. Veterinary Microbiology 53: 121132.CrossRefGoogle ScholarPubMed
Deruelle, MJ and Favoreel, HW (2011). Keep it in the subfamily: the conserved alphaherpesvirus US3 protein kinase. Journal of General Virology 92: 1830.CrossRefGoogle ScholarPubMed
Devireddy, LR and Jones, CJ (1999). Activation of caspases and p53 by bovine herpesvirus 1 infection results in programmed cell death and efficient virus release. Journal of Virology 73: 37783788.CrossRefGoogle ScholarPubMed
Dingwell, KS and Johnson, DC (1998). The herpes simplex virus gE-gI complex facilitates cell-to-cell spread and binds to components of cell junctions. Journal of Virology 72: 89338942.CrossRefGoogle ScholarPubMed
Distelhorst, K, Voyich, J and Wilson, E (2010). Partial characterization and distribution of the chemokines CCL25 and CCL28 in the bovine system. Veterinary Immunology and Immunopathology 138: 134138.CrossRefGoogle ScholarPubMed
Donnelly, JJ, Ulmer, JB, Shiver, JW and Liu, MA (1997). DNA vaccines. Annual Review of Immunology 15: 617648.CrossRefGoogle ScholarPubMed
Dubuisson, J, Israel, BA and Letchworth, GJ III (1992). Mechanisms of bovine herpesvirus type 1 neutralization by monoclonal antibodies to glycoproteins gI, gIII and gIV. Journal of General Virology 73: 20312039.CrossRefGoogle ScholarPubMed
Duchez, S, Rodrigues, M, Bertrand, F and Valitutti, S (2011). Reciprocal polarization of T and B cells at the immunological synapse. Journal of Immunology 187: 45714580.CrossRefGoogle Scholar
Elazhary, MA, Silim, A and Dea, S (1984). Prevalence of antibodies to bovine respiratory syncytial virus, bovine viral diarrhea virus, bovine herpesvirus-1, and bovine parainfluenza-3 virus in sheep and goats in Quebec. American Journal of Veterinary Research 45: 16601662.Google ScholarPubMed
El Hussein, AM, Intisar, KS, Ali, YH and Fadol, MA (2005). Prevalence of antibodies to infectious bovine rhinotracheitis virus in Sudanese cattle. Journal of Science and Technology 6: 151157.Google Scholar
Ellis, JA (2009). Update on viral pathogenesis in BRD. Animal Health Research Reviews 10: 149153.CrossRefGoogle ScholarPubMed
Endsley, JJ, Quade, MJ, Terhaar, B and Roth, JA (2002). BHV-1-Specific CD4+, CD8+, and γδ T cells in calves vaccinated with one dose of a modified live BHV-1 vaccine. Viral Immunology 15: 385393.CrossRefGoogle ScholarPubMed
Engels, M and Ackermann, M (1996). Pathogenesis of ruminant herpesvirus infections. Veterinary Microbiology 53: 315.CrossRefGoogle ScholarPubMed
Epstein, AL and Manservigi, R (2004). Herpesvirus/retrovirus chimeric vectors. Current Gene Therapy 4: 409416.CrossRefGoogle ScholarPubMed
Eskra, L and Splitter, GA (1997). Bovine herpesvirus-1 infects activated CD4 lymphocytes. Journal of General Virology 78: 21592166.Google Scholar
Estes, DM (2010). Regulation of IgA responses in cattle, humans and mice. Veterinary Immunology and Immunopathology 138: 312317.CrossRefGoogle ScholarPubMed
Estes, DM and Brown, WC (2002). Type 1 and type 2 responses in regulation of Ig isotype expression in cattle. Veterinary Immunology and Immunopathology 90: 110.CrossRefGoogle ScholarPubMed
Falcone, E, Cordioli, P, Tarantino, M, Muscillo, M, Sala, G, La Rosa, G, Archetti, IL, Marianelli, C, Lombardi, G and Tollis, M (2003). Experimental infection of calves with bovine viral diarrhoea virus type-2 (BVDV-2) isolated from a contaminated vaccine. Veterinary Research Communications 27: 577589.CrossRefGoogle ScholarPubMed
Favoreel, HW, Van de Walle, GR, Nauwynck, HJ and Pensaert, MB (2003). Virus complement evasion strategies. Journal of General Virology 84: 115.CrossRefGoogle ScholarPubMed
Favoreel, HW, Van Minnebruggen, G, Van de Walle, GR, Ficinska, J and Nauwynck, HJ (2006). Herpesvirus interference with virus-specific antibodies: bridging antibodies, internalizing antibodies, and hiding from antibodies. Veterinary Microbiology 113: 257263.CrossRefGoogle ScholarPubMed
Filion, LG, McGuire, RL and Babiuk, LA (1983). Nonspecific suppressive effect of bovine herpesvirus type 1 on bovine leukocyte functions. Infection and Immunity 42: 106112.Google Scholar
Fitzpatrick, DR, Babiuk, LA and Zamb, TJ (1989). Nucleotide sequence of bovine herpesvirus type 1 glycoprotein gIII, a structural model for gIII as a new member of the immunoglobulin superfamily, and implications for the homologous glycoproteins of other herpesviruses. Virology 173: 4657.CrossRefGoogle ScholarPubMed
Fitzpatrick, DR, Snider, M, McDougall, L, Beskorwayne, T, Babiuk, LA, Zamb, TJ and Ohmann, HB (1990). Molecular mimicry: a herpes virus glycoprotein antigenically related to a cell-surface glycoprotein expressed by macrophages, polymorphonuclear leucocytes, and platelets. Immunology 70: 504512.Google ScholarPubMed
Forman, AJ, Babiuk, LA, Baldwin, F and Friend, SC (1982). Effect of infectious bovine rhinotracheitis virus infection of calves on cell populations recovered by lung lavage. American Journal of Veterinary Research 43: 11741179.Google ScholarPubMed
Freer, G and Matteucci, D (2009). Influence of dendritic cells on viral pathogenicity. Public Library of Science Pathogens 5: e1000384. doi:10.1371/journal.ppat.1000384.Google ScholarPubMed
Frerichs, GN, Woods, SB, Lucas, MH and Sands, JJ (1982). Safety and efficacy of live and inactivated infectious bovine rhinotracheitis vaccines. Veterinary Record 111: 116122.CrossRefGoogle ScholarPubMed
Gao, Y, Wang, C and Splitter, GA (1999). Mapping T and B lymphocyte epitopes of bovine herpesvirus-1 glycoprotein B. Journal of General Virology 80: 26992704.CrossRefGoogle Scholar
Gerdts, V, Snider, M, Brownlie, R, Babiuk, LA and Griebel, PJ (2002). Oral DNA vaccination in utero induces mucosal immunity and immune memory in the neonate. Journal of Immunology 168: 18771885.CrossRefGoogle ScholarPubMed
Gerner, W, Hammer, SE, Wiesmüller, K-H and Saalmüller, A (2009). Identification of major histocompatibility complex restriction and anchor residues of foot-and-mouth disease virus-derived bovine T-cell epitopes. Journal of Virology 83: 40394050.CrossRefGoogle ScholarPubMed
Gibbs, EPJ and Rweyemamu, MM (1977). Bovine herpesviruses. Part 1: bovine herpesvirus 1. Veterinary Bulletin 47: 317343.Google Scholar
Glass, EJ (2004). Genetic variation and responses to vaccines. Animal Health Research Reviews 5: 197208.CrossRefGoogle ScholarPubMed
Glass, EJ, Baxter, R, Leach, RJ and Jann, OC (2012). Genes controlling vaccine responses and disease resistance to respiratory viral pathogens in cattle. Veterinary Immunology and Immunopathology 148: 9099.CrossRefGoogle ScholarPubMed
Gopinath, RS, Ambagala, AP, Hinkley, S and Srikumaran, S (2002). Effects of virion host shut-off activity of bovine herpesvirus 1 on MHC class I expression. Viral Immunology 15: 595608.Google Scholar
Grewal, AS, Rouse, BT and Babiuk, LA (1977). Mechanisms of resistance to herpesviruses: Comparison cof the effectiveness of different cell types in mediating antibody-dependent cell-mediated cytotoxicity. Infection and Immunity 15: 698703.CrossRefGoogle Scholar
Griebel, PJ, Ohmann, HB, Lawman, MJP and Babiuk, LA (1990). The interaction between bovine herpesvirus type 1 and activated bovine T lymphocytes. Journal of General Virology 71: 369377.CrossRefGoogle ScholarPubMed
Griffin, BD, Verweij, MC and Wiertz, EJ (2010). Herpesviruses and immunity: the art of evasion. Veterinary Microbiology 143: 89100.CrossRefGoogle ScholarPubMed
Gupta, PK, Saini, M, Gupta, LK, Rao, VDP, Bandyopadhyay, SK, Butchaiah, G, Garg, GK and Garg, SK (2001). Induction of immune responses in cattle with a DNA vaccine encoding glycoprotein C of bovine herpesvirus-1. Veterinary Microbiology 78: 293305.Google Scholar
Gurish, MF, Ben-Porat, T and Nisonoff, A (1988). Induction of antibodies to pseudorabies virus by immunization with antiidiotypic antibodies. Annals of the Institute Pasteur/Immunology 139: 677687.CrossRefGoogle ScholarPubMed
Gurunathan, S, Klinman, DM and Seder, RA (2000). DNA vaccines: immunology, application, and optimization. Annual Review of Immunology 18: 927974.Google Scholar
Guzman, E, Taylor, G, Charleston, B, Skinner, MA and Ellis, SA (2008). An MHC-restricted CD8+ T-cell response is induced in cattle by foot-and-mouth disease virus (FMDV) infection and also following vaccination with inactivated FMDV. Journal of General Virology 89: 667675.CrossRefGoogle ScholarPubMed
Guzman, E, Price, S, Poulsom, H and Hope, J (2012). Bovine γδ T cells: cells with multiple functions and important roles in immunity. Veterinary Immunology and Immunopathology 148: 161167.CrossRefGoogle ScholarPubMed
Haanes, EJ and Wardley, RC (1997). Expression of the bovine parainfluenza virus type 3 hemagglutinin/neuraminidase (hn) glycoprotein in two heterologous systems. European Patent 0793728 A1.Google Scholar
Hage, JJ, Glas, RD, Westra, HH, Maris-Veldhuis, MA, Van Oirschot, JT and Rijsewijk, FAM (1998). Reactivation of latent bovine herpesvirus 1 in cattle seronegative to glycoproteins gB and gE. Veterinary Microbiology 60: 8798.CrossRefGoogle ScholarPubMed
Hanon, E, Keil, G, van Drunen Littel-van den, Hurk S, Griebel, P, Vanderplasschen, A, Rijsewijk, FAM, Babiuk, L and Pastoret, P-P (1999). Bovine herpesvirus 1-induced apoptotic cell death: role of glycoprotein D. Virology 257: 191197.Google Scholar
Haralambiev, H (1976). Immunogenicity studies of an inactivated IBR vaccine administered into the nasal mucosa. Acta Veterinaria Academiae Scientiarum Hungaricae 26: 215217.Google Scholar
Hariharan, K, Hariharan, MJ, Zamb, TJ, Krueger, RJ and Srikumaran, S (1991). Bovine monoclonal anti-idiotypes induce antibodies specific for a synthetic peptide bearing a neutralizing epitope of bovine herpesvirus 1 glycoprotein gI (gB). Journal of Immunology 146: 34893495.CrossRefGoogle ScholarPubMed
Harland, RJ, Potter, AA, van Drunen-Littel-van den, Hurk S, Van Donkersgoed, J, Parker, MD, Zamb, TJ and Janzen, ED (1992). The effect of subunit or modified live bovine herpesvirus-1 vaccines on the efficacy of a recombinant Pasteurella haemolytica vaccine for the prevention of respiratory disease in feedlot calves. Canadian Veterinary Journal 33: 734741.Google Scholar
Hart, J, MacHugh, ND and Morrison, WI (2011). Theileria annulata-transformed cell lines are efficient antigen-presenting cells for in vitro analysis of CD8 T cell responses to bovine herpesvirus-1. Veterinary Research 42: 119.CrossRefGoogle ScholarPubMed
Held, K, Junker, A, Dornmair, K, Meinl, E, Sinicina, I, Brandt, T, Theil, D and Derfuss, T (2011). Expression of herpes simplex virus 1-encoded microRNAs in human trigeminal ganglia and their relation to local T-cell infiltrates. Journal of Virology 85: 96809685.CrossRefGoogle ScholarPubMed
Henderson, G, Zhang, Y and Jones, C (2005). The bovine herpesvirus 1 gene encoding infected cell protein 0 (bICP0) can inhibit interferon-dependent transcription in the absence of other viral genes. Journal of General Virology 86: 26972702.CrossRefGoogle Scholar
Henderson, LM, Levings, RL, Davis, AJ and Sturtz, DR (1991). Recombination of pseudorabies virus vaccine strains in swine. American Journal of Veterinary Research 52: 820825.CrossRefGoogle ScholarPubMed
Henninger, RW, Reed, SM, Saville, WJ, Allen, GP, Hass, GF, Kohn, CW and Sofaly, C (2007). Outbreak of neurologic disease caused by equine herpesvirus-1 at a university equestrian center. Journal of Veterinary Internal Medicine 21: 157165.Google Scholar
Herzig, CTA and Baldwin, CL (2009). Genomic organization and classification of the bovine WC1 genes and expression by peripheral blood gamma delta T cells. BioMed Central Genomics 10: 191. doi:10.1186/1471-2164-10-191.Google ScholarPubMed
Herzig, CTA, Waters, RW, Baldwin, CL and Telfer, JC (2010). Evolution of the CD163 family and its relationship to the bovine gamma delta T cell co-receptor WC1. BioMed Central Evolutionary Biology 10: 181.CrossRefGoogle Scholar
Hinkley, S, Hill, AB and Srikumaran, S (1998). Bovine herpesvirus-1 infection affects the peptide transport activity in bovine cells. Virus Research 53: 9196.CrossRefGoogle ScholarPubMed
Hirano, M, Das, S, Guo, P and Cooper, MD (2011). The evolution of adaptive immunity in vertebrates. Advances in Immunology 109: 125157.CrossRefGoogle ScholarPubMed
Hodgins, DC, Conlon, JA and Shewen, PE (2002). Respiratory viruses and bacteria in cattle. Chapter 12 In: Brogden, KA and Guthmiller, JM (eds) Polymicrobial Diseases. Washington: ASM Press, pp. 213229.Google Scholar
Hogg, AE, Parsons, K, Taylor, G, Worth, A, Beverley, P, Christopher, J, Howard, CJ and Villarreal-Ramos, B (2011). Characterization of age-related changes in bovine CD8+ T-cells. Veterinary Immunology and Immunopathology 140: 4754.CrossRefGoogle ScholarPubMed
Huang, Y, Babiuk, LA and van Drunen Littel-van den, Hurk S (2005). Immunization with a bovine herpesvirus 1 glycoprotein B DNA vaccine induces cytotoxic T-lymphocyte responses in mice and cattle. Journal of General Virology 86: 887898.CrossRefGoogle ScholarPubMed
Hutchings, DL, Campos, M, Qualtiere, L and Babiuk, LA (1990). Inhibition of antigen-induced and interleukin-2-induced proliferation of bovine peripheral blood leukocytes by inactivated bovine herpes virus 1. Journal of Virology 64: 41464151.CrossRefGoogle ScholarPubMed
Inman, M, Lovato, L, Doster, A and Jones, C (2001). A mutation in the latency-related gene of bovine herpesvirus 1 leads to impaired ocular shedding in acutely infected calves. Journal of Virology 75: 85078515.CrossRefGoogle ScholarPubMed
Ioannou, XP, Griebel, P, Hecker, R, Babiuk, LA and van Drunen Littel-van den, Hurk S (2002). The immunogenicity and protective efficacy of bovine herpesvirus 1 glycoprotein D plus emulsigen are increased by formulation with CpG oligodeoxynucleotides. Journal of Virology 76: 90029010.CrossRefGoogle ScholarPubMed
Israel, BA, Herber, R, Gao, Y and Letchworth, GJ III (1992). Induction of a mucosal barrier to bovine herpesvirus 1 replication in cattle. Virology 188: 256264.CrossRefGoogle ScholarPubMed
Jaime-Ramirez, AC, Mundy-Bosse, BL, Kondadasula, S, Jones, NB, Roda, JM, Mani, A, Parihar, R, Karpa, V, Papenfuss, TL, LaPerle, KM, Biller, E, Lehman, A, Chaudhury, AR, Jarjoura, D, Burry, RW and Carson, WE 3rd (2011). IL-12 enhances the antitumor actions of trastuzumab via NK cell IFN-γ production. Journal of Immunology 186: 34013409.CrossRefGoogle ScholarPubMed
Jenssen, H (2009). Therapeutic approaches using host defence peptides to tackle herpes virus infections. Viruses 1: 939964.Google Scholar
Jericho, KWF and Langford, EV (1978). Pneumonia in calves produced with aerosols of bovine herpesvirus 1 and Pasteurella haemolytica. Canadian Journal of Comparative Medicine 42: 269277.Google ScholarPubMed
Jones, C (2003). Herpes simplex virus type 1 and bovine herpesvirus 1 latency. Clinical Microbiology Reviews 16: 7995.CrossRefGoogle ScholarPubMed
Jones, C and Chowdhury, S (2007). A review of the biology of bovine herpesvirus type 1 (BHV-1), its role as a cofactor in the bovine respiratory disease complex and development of improved vaccines. Animal Health Research Reviews 8: 187205.CrossRefGoogle ScholarPubMed
Juliarena, MA, Poli, M, Ceriani, C, Sala, L, Rodríguez, E, Gutierrez, S, Dolcini, G, Odeon, A and Esteban, EN (2009). Antibody response against three widespread bovine viruses is not impaired in Holstein cattle carrying bovine leukocyte antigen DRB3.2 alleles associated with bovine leukemia virus resistance. Journal of Dairy Science 92: 375381.CrossRefGoogle Scholar
Jutila, MA, Holderness, J, Graff, JC and Hedges, JF (2008). Antigen-independent priming: a transitional response of bovine γδ T-cells to infection. Animal Health Research Reviews 9: 4757.CrossRefGoogle ScholarPubMed
Kaashoek, MJ, Moerman, A, Madić, J, Rijsewijk, FA, Quak, J, Gielkens, AL and van Oirschot, JT (1994). A conventionally attenuated glycoprotein E-negative strain of bovine herpesvirus type 1 is an efficacious and safe vaccine. Vaccine 12: 439444.CrossRefGoogle ScholarPubMed
Kaashoek, MJ, Moerman, A, Madić, J, Weerdmeester, K, Maris-Veldhuis, M, Rijsewijk, FA and van Oirschot, JT (1995). An inactivated vaccine based on a glycoprotein E-negative strain of bovine herpesvirus 1 induces protective immunity and allows serological differentiation. Vaccine 13: 342346.Google Scholar
Kaashoek, MJ, Rijsewijk, FAM and Van Oirschot, JT (1996a). Persistence of antibodies against bovine herpesvirus 1 and virus reactivation two to three years after infection. Veterinary Microbiology 53: 103110.CrossRefGoogle ScholarPubMed
Kaashoek, MJ, van Engelenburg, FAC, Moerman, A, Gielkens, ALJ, Rijsewijk, FAM and van Oirschot, JT (1996b). Virulence and immunogenicity in calves of thymidine kinase- and glycoprotein E-negative bovine herpesvirus 1 mutants. Veterinary Microbiology 48: 143153.CrossRefGoogle ScholarPubMed
Kaashoek, MJ, Rijsewijk, FA, Ruuls, RC, Keil, GM, Thiry, E, Pastoret, PP and Van Oirschot, JT (1998). Virulence, immunogenicity and reactivation of bovine herpesvirus 1 mutants with a deletion in the gC, gG, gI, gE, or in both the gI and gE gene. Vaccine 16: 802809.Google Scholar
Kacskovics, I (2004). Fc receptors in livestock species. Veterinary Immunology and Immunopathology 102: 351362.CrossRefGoogle ScholarPubMed
Kahn, CM, Line, S and Aiella, SE (2005). The Merck Veterinary Manual. Whitehouse Station, NJ: Merck, Sharp and Dohme, p. 2712.Google Scholar
Kahrs, R, Atkinson, G, Baker, JA, Carmichael, L, Coggins, L, Gillespie, J, Langer, P, Marshall, V, Robson, D and Sheffy, B (1964). Serological studies on the incidence of bovine viral diarrhea, infectious bovine rhinotracheitis, bovine myxovirus parainfluenza-3, and Leptospira Pomona in New York state. Cornell Veterinarian 54: 360369.Google Scholar
Kahrs, RF (2001). Infectious bovine rhinotracheitis. In: Kahrs, RF (ed.) Viral Diseases of Cattle, 2nd edn. Ames, IA: Iowa State University Press, pp. 159170.Google Scholar
Kampa, J, Ståhl, K, Moreno-López, J, Chanlun, A, Aiumlamai, S and Alenius, S (2004). BVDV and BHV.1 infections in dairy herds in northern and northeastern Thailand. Acta Veterinaria Scandinavica 45: 181192.CrossRefGoogle ScholarPubMed
Keil, GM, Klopfleisch, C, Giesow, K and Veits, J (2010). Protein display by bovine herpesvirus type 1 glycoprotein B. Veterinary Microbiology 143: 2936.CrossRefGoogle ScholarPubMed
Kelley, KW (1980). Stress and immune function: a bibliographic review. Annales de Recherches Vétérinaires 11: 445478.Google ScholarPubMed
Kendrick, JW, York, CJ and McKercher, DG (1957). A controlled field trial of a vaccine for infectious bovine rhinotracheitis. Proceedings, Annual Meeting of the United States Livestock Sanitary Association 60: 155158.Google Scholar
Kennedy, RC, Adler-Storthz, K, Burns, JW Sr, Henkel, RD and Dreesman, GR (1984). Antiidiotype modulation of herpes simplex virus infection leading to increased pathogenicity. Journal of Virology 50: 951953.CrossRefGoogle ScholarPubMed
Khattar, SK, Collins, PL and Samal, SK (2010). Immunization of cattle with recombinant Newcastle disease virus expressing bovine herpesvirus-1 (BHV-1) glycoprotein D induces mucosal and serum antibody responses and provides partial protection against BHV-1. Vaccine 28: 31593170.CrossRefGoogle ScholarPubMed
Kit, M, Kit, S, Little, SP, Di Marchi, RD and Gale, C (1991). Bovine herpesvirus-1 (infectious bovine rhinotracheitis virus)-based viral vector which expresses foot-and-mouth disease epitopes. Vaccine 9: 564572.CrossRefGoogle ScholarPubMed
Kit, S, Qavi, H, Gaines, JD, Billingsley, P and McConnell, S (1985). Thymidine kinase-negative bovine herpesvirus type 1 mutant is stable and highly attenuated in calves. Archives of Virology 86: 6383.CrossRefGoogle ScholarPubMed
Klasse, PJ and Sattentau, QJ (2002). Occupancy and mechanism in antibody-mediated neutralization of animal viruses. Journal of General Virology 83: 20912108.CrossRefGoogle ScholarPubMed
Knittler, MR, Alberts, P, Deverson, EV and Howard, JC (1999). Nucleotide binding by TAP mediates association with peptide and release of assembled MHC class I molecules. Current Biology 9: 9991008.CrossRefGoogle ScholarPubMed
Kolar, JR, Shechmeister, IL and Kammlade, WG (1972). Use in cattle of formalin-killed polyvalent vaccine with adjuvant against infectious bovine rhinotracheitis, bovine viral diarrhea, and parainfluenza-3 viruses. American Journal of Veterinary Research 33: 14151420.Google Scholar
Koppers-Lalic, D (2007). Immune evasion by varicelloviruses: the identification of a new family of TAP-inhibiting proteins. Doctoral thesis, Leiden University.Google Scholar
Koppers-Lalic, D, Rijsewijk, FAM, Verschuren, SBE, van Gaans-van den Brink, JAM, Neisig, A, Ressing, ME, Neefjes, J and Wiertz, EJHJ (2001). The UL41-encoded virion host shutoff (vhs) protein and vhs independent mechanisms are responsible for down-regulation of MHC class I molecules by bovine herpesvirus 1. Journal of General Virology 82: 20712081.CrossRefGoogle ScholarPubMed
Koppers-Lalic, D, Reits, EAJ, Ressing, ME, Lipinska, AD, Abele, R, Koch, J, Rezende, MM, Admiraal, P, van Leeuwen, D, Bienkowska-Szewczyk, K, Mettenleiter, TC, Rijsewijk, FAM, Tampé, R, Neefjes, J and Wiertz, EJHJ (2005). Varicelloviruses avoid T cell recognition by UL49.5-mediated inactivation of the transporter associated with antigen processing. Proceedings of the National Academy of Sciences USA 102: 51445149.CrossRefGoogle ScholarPubMed
Koppers-Lalic, D, Verweij, MC, Lipińska, AD, Wang, Y, Quinten, E, Reits, EA, Koch, J, Loch, S, Rezende, MM, Daus, F, Bieńkowska-Szewczyk, K, Osterriede, N, Mettenleiter, TC, Heemskerk, MHM, Tampé, R, Neefjes, JJ, Chowdhury, SI, Ressing, ME, Rijsewijk, FAM and Wiertz, EJHJ (2008). Varicellovirus UL49.5 proteins differentially affect the function of the transporter associated with antigen processing, TAP. PLoS Pathog 4: e1000080. doi:10.1371/journal.ppat.1000080.CrossRefGoogle ScholarPubMed
Kowalski, J, Gilbert, SA, van Drunen-Littel-van den, Hurk S, van den Hurk, J, Babiuk, LA and Zamb, TJ (1993). Heat-shock promoter-driven synthesis of secreted bovine herpesvirus glycoproteins in transfected cells. Vaccine 11: 11001107.CrossRefGoogle ScholarPubMed
Kühnle, G, Collins, RA, Scott, JE and Keil, GM (1996). Bovine inerleukins 2 and 4 expressed in recombinant bovine herpesvirus 1 are biologically active secreted glycoproteins. Journal of General Virology 77: 22312240.CrossRefGoogle ScholarPubMed
Kweon, CH, Kang, SW, Choi, EJ and Kang, YB (1999). Bovine herpes virus expressing envelope protein (E2) of bovine viral diarrhea virus as a vaccine candidate. Journal of Veterinary Medical Science 61: 395401.CrossRefGoogle ScholarPubMed
Lambotin, M, Raghuraman, S, Stoll-Keller, F, Baumert, TF and Barth, H (2010). A look behind closed doors: interaction of persistent viruses with dendritic cells. Nature Reviews Microbiology 8: 350360.CrossRefGoogle ScholarPubMed
Lanzavecchia, A and Sallusto, F (2007). Toll-like receptors and innate immunity in B-cell activation and antibody responses. Current Opinion in Immunology 19: 268274.CrossRefGoogle ScholarPubMed
Lazear, E, Whitbeck, JC, Ponce-de-Leon, M, Cairns, TM, Willis, SH, Zuo, Y, Krummenacher, C, Cohen, GH and Eisenberg, RJ (2012). Antibody-induced conformational changes in herpes simplex virus glycoprotein gD reveal new targets for virus neutralization. Journal of Virology 86: 15631576.CrossRefGoogle ScholarPubMed
Leary, TP and Splitter, GA (1990). Recombinant herpesviral proteins produced by cell-free translation provide a novel approach for the mapping of T lymphocyte epitopes. Journal of Immunology 145: 718723.CrossRefGoogle ScholarPubMed
Lee, S-W, Markham, PF, Coppo, MJC, Legione, AR, Markham, JF, Amir, H, Noormohammadi, AH, Browning, GF, Ficorilli, N, Hartley, CA and Devlin, JM (2012). Attenuated vaccines can recombine to form virulent field viruses. Science 227: 188.CrossRefGoogle Scholar
Lemaire, M, Meyer, G, Ernst, E, Vanherreweghe, V, Limbourg, B, Pastoret, P-P and Thiry, E (1995). Latent bovine herpesvirus 1 infection in calves protected by colostral immunity. Veterinary Record 137: 7071.CrossRefGoogle ScholarPubMed
Lemaire, M, Meyer, G, Baranowski, E, Schynts, F, Wellemans, G, Kerkhofs, P and Thiry, E (2000a). Production of bovine herpesvirus type 1-seronegative latent carriers by administration of a live-attenuated vaccine in passively immunized calves. Journal of Clinical Microbiology 38: 42334238.CrossRefGoogle ScholarPubMed
Lemaire, M, Weynants, V, Godfroid, J, Schynts, F, Meyer, G, Letesson, J-J and Thiry, E (2000b). Effects of bovine herpesvirus type 1 infection in calves with maternal antibodies on immune response and virus latency. Journal of Clinical Microbiology 38: 18851894.CrossRefGoogle ScholarPubMed
Levings, RL and Roth, JA (2013). Immunity to bovine herpesvirus 1 infections: I. Viral lifecycle and innate immunity. Animal Health Research Reviews 14: doi: 10.1017/S1466252313000042.Google Scholar
Levings, RL, Kaeberle, ML and Reed, DE (1984). The effect of some common inactivation procedures on the antigens of bovine herpesvirus 1. Veterinary Microbiology 9: 313328.CrossRefGoogle ScholarPubMed
Liang, X, Tang, M, Manns, B, Babiuk, LA and Zamb, TJ (1993). Identification and deletion mutagenesis of the bovine herpesvirus 1 dUTPase gene and a gene homologous to herpes simplex virus UL49.5. Virology 195: 4250.CrossRefGoogle Scholar
Lipińska, AD, Koppers-Lalic, D, Rychłowski, M, Admiraal, P, Rijsewijk, FAM, Bieńkowska-Szewczyk, K and Wiertz, EJHJ (2006). Bovine herpesvirus 1 UL49.5 protein inhibits the transporter associated with antigen processing despite complex formation with glycoprotein M. Journal of Virology 80: 58225832.CrossRefGoogle ScholarPubMed
Lippolis, JD (2008). Immunological signaling networks: integrating the body's immune response. Journal of Animal Science 86 (suppl. 14): E53E63.CrossRefGoogle ScholarPubMed
Loch, S, Klauschies, F, Schölz, C, Verweij, MC, Wiertz, EJHJ, Koch, J and Tampé, R (2008). Signaling of a varicelloviral factor across the endoplasmic reticulum membrane induces destruction of the peptide-loading complex and immune evasion. Jourmal of Biological Chemistry 283: 1342813436.Google Scholar
Loehr, BI, Willson, P, Babiuk, LA and van Drunen Littel-van den, Hurk S (2000). Gene gun-mediated DNA immunization primes development of mucosal immunity against bovine herpesvirus 1 in cattle. Journal of Virology 74: 60776086.CrossRefGoogle ScholarPubMed
Loehr, BI, Rankin, R, Pontarollo, R, King, T, Willson, P, Babiuk, LA and van Drunen Littel-van den, Hurk S (2001). Suppository-mediated DNA immunization induces mucosal immunity against bovine herpesvirus-1 in cattle. Virology 289: 327333.CrossRefGoogle ScholarPubMed
Lubinski, JM, Lazear, HM, Awasthi, S, Wang, F and Friedman, HM (2011). The herpes simplex virus 1 IgG Fc receptor blocks antibody-mediated complement activation and antibody-dependent cellular cytotoxicity in vivo. Journal of Virology 85: 32393249.CrossRefGoogle ScholarPubMed
Lupton, HW and Reed, DE (1980). Evaluation of experimental subunit vaccines for infectious bovine rhinotracheitis. American Journal of Veterinary Research 41: 383390.Google ScholarPubMed
MacHugh, ND, Mburu, JK, Carol, MJ, Wyatt, CR, Orden, JA and Davis, WC (1997). Identification of two distinct subsets of bovine γδ T cells with unique cell surface phenotype and tissue distribution. Immunology 92: 340345.CrossRefGoogle Scholar
Macnab, S, White, R, Hiscox, J and Whitehouse, A (2008). Production of an infectious Herpesvirus saimiri-based episomally maintained amplicon system. Journal of Biotechnology 134: 287296.Google Scholar
Marnila, P and Korhonen, H (2011). Milk proteins – immunoglobulins. In: Fuquay, JW, Fox, PF and McSweeney, PLH (eds) Encyclopedia of Dairy Sciences. Salt Lake City, UT: Academic Press, pp. 807815.CrossRefGoogle Scholar
Marshall, RL and Letchworth, GJ III (1988). Passively administered neutralizing monoclonal antibodies do not protect calves against bovine herpesvirus 1 infection. Vaccine 6: 343348.CrossRefGoogle Scholar
Martin, SW, Meek, AH, Davis, DG, Thomson, RG, Johnson, JA, Lopez, A, Stephens, L, Curtis, RA, Prescott, JF, Rosendol, S, Savon, M, Zuboidy, AJ and Bolton, MR (1980). Factors associated with mortality in feedlot cattle: the Bruce county beef cattle project. Canadian Journal of Comparative Medicine 44: 110.Google ScholarPubMed
McGuire, RL and Babiuk, LA (1984). Evidence for defective neutrophil function in lungs of calves exposed to infectious bovine rhinotracheitis virus. Veterinary Immunology and Immunopathology 5: 259271.CrossRefGoogle ScholarPubMed
Meckes, DG Jr and Raab-Traub, N (2011). Microvesicles and viral infection. Journal of Virololgy 85: 1284412854.CrossRefGoogle ScholarPubMed
Meeusen, ENT, Walker, J, Peters, A, Pastoret, P-P and Jungersen, G (2007). Current status of veterinary vaccines. Clinical Microbiology Reviews 20: 489510.CrossRefGoogle ScholarPubMed
Meissner, N, Radke, J, Hedges, JF, White, M, Behnke, M, Bertolino, S, Abrahamsen, M and Jutila, MA (2003). Serial analysis of gene expression in circulating γδ T cell subsets defines distinct immunoregulatory phenotypes and unexpected gene expression profiles. Journal of Immunology 170: 356364.Google Scholar
Menanteau-Horta, AM, Ames, TR, Johnson, DW and Meiske, JC (1985). Effect of maternal antibody upon vaccination with infectious bovine rhinotracheitis and bovine virus diarrhea vaccines. Canadian Journal of Comparative Medicine 49: 1014.Google Scholar
Metzler, AE, Matile, H, Gassmann, U, Engels, M and Wyler, R (1985). European isolates of bovine herpesvirus 1: a comparison of restriction endonuclease sites, polypeptides, and reactivity with monoclonal antibodies. Archives of Virology 85: 5769.CrossRefGoogle ScholarPubMed
Meyer, A, Parng, CL, Hansal, SA, Osborne, BA and Goldsby, RA (1997). Immunoglobulin gene diversification in cattle. International Reviews of Immunology 15: 165183.CrossRefGoogle ScholarPubMed
Mühlbach, H, Mohr, CA, Ruzsics, Z and Koszinowski, UH (2009). Dominant-negative proteins in herpesviruses – From assigning gene function to intracellular immunization. Viruses 1: 420440.CrossRefGoogle ScholarPubMed
Murphy, K, Travers, P and Walport, M (2008). Janeway's Immunobiology. New York, NY: Garland Science, p. 887.Google Scholar
Muylkens, B, Meurens, F, Schynts, F, de Fays, K, Pourchet, A, Thiry, J, Vanderplasschen, A, Antoine, N and Thiry, E (2006a). Biological characterization of bovine herpesvirus 1 recombinants possessing the vaccine glycoprotein E negative phenotype. Veterinary Microbiology 113: 283291.CrossRefGoogle ScholarPubMed
Muylkens, B, Meurens, F, Schynts, F, Farnir, F, Pourchet, A, Bardiau, M, Gogev, S, Thiry, J, Cuisenaire, A, Vanderplasschen, A and Thiry, E (2006b). Intraspecific bovine herpesvirus 1 recombinants carrying glycoprotein E deletion as a vaccine marker are virulent in cattle. Journal of General Virology 87: 21492154.CrossRefGoogle ScholarPubMed
Muylkens, B, Thiry, J, Kirten, P, Schynts, F and Thiry, E (2007). Bovine herpesvirus 1 infection and infectious bovine rhinotracheitis. Veterinary Research 38: 181209.CrossRefGoogle ScholarPubMed
Nace, G, Evankovich, J, Eid, R and Tsung, A (2012). Dendritic cells and damage-associated molecular patterns: endogenous danger signals linking innate and adaptive immunity. Journal of Innate Immunity 4: 615.CrossRefGoogle ScholarPubMed
Nandi, S, Kumar, M, Manohar, M and Chauhan, RS (2009). Bovine herpes virus infections in cattle. Animal Health Research Reviews 10: 8598.CrossRefGoogle ScholarPubMed
Nataraj, C and Srikumaran, S (1994). Bovine x murine T-cell hybridomas specific for bovine herpesvirus 1 (BHV-1) glycoproteins. Viral Immunology 7: 1123.CrossRefGoogle ScholarPubMed
Neefjes, JJ, Momburg, F and Hämmerling, GJ (1993). Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter. Science 261: 769771.CrossRefGoogle ScholarPubMed
Neutra, MR and Kozlowski, PA (2006). Mucosal vaccines: the promise and the challenge. Nature Reviews Immunology 6: 148158.CrossRefGoogle ScholarPubMed
Nguyen, ML and Blaho, JA (2009). Cellular players in the herpes simplex virus dependent apoptosis balancing Act. Viruses 1: 965978.CrossRefGoogle ScholarPubMed
Niku, M, Liljavirta, J, Durkin, K, Schroderus, E and Iivanainen, A (2012). The bovine genomic DNA sequence data reveal three IGHV subgroups, only one of which is functionally expressed. Developmental and Comparative Immunology 37: 457461.Google Scholar
Ohmann, HB and Babiuk, LA (1985). Viral-bacterial pneumonia in calves: effect of bovine herpesvirus-1 on immunologic functions. Journal of Infectious Diseases 151: 937947.CrossRefGoogle Scholar
Ohmann, HB and Babiuk, LA (1986). Alteration of alveolar macrophage functions after aerosol infection with bovine herpesvirus type 1. Infection and Immunity 51: 344347.CrossRefGoogle Scholar
Orten, DJ, Reddy, PG, Reddy, DN, Xue, W, AbdelMagid, OY, Blecha, F and Minocha, HC (1991). Induction of immune response to bovine herpesvirus-1 with anti-idiotypic antibodies. Viral Immunology 4: 111122.CrossRefGoogle ScholarPubMed
Orten, DJ, Xue, W, van Drunen Littel-van den, Hurk S, AbdelMagid, OY, Reddy, DN, Campos, M, Babiuk, LA, Blecha, F and Minocha, HC (1993). Comparison of bovine immune responses to affinity-purified bovine herpesvirus-1 antiidiotypes and glycoproteins. Viral Immunology 6: 109117.CrossRefGoogle ScholarPubMed
O'Toole, D, Miller, MM, Cavender, JL and Cornish, TE (2012). Pathology in practice. Journal of the American Veterinary Medical Association 241: 189191.CrossRefGoogle ScholarPubMed
Pasman, Y, Saini, SS, Smith, E and Kaushik, AK (2010). Organization and genomic complexity of bovine lambda-light chain gene locus. Veterinary Immunology and Immunopathology 135: 306313.CrossRefGoogle ScholarPubMed
Pastoret, P-P, Aguilar-Setién, A, Burtonboy, G, Mager, J, Jetteur, P and Schoenaers, F (1979). The effect of repeated treatment with dexamethasone on the re-excretion pattern of infectious bovine rhinotracheitis virus and humoral immune response. Veterinary Microbiology 4: 149155.CrossRefGoogle Scholar
Pastoret, PP, Babiuk, LA, Misra, V and Griebel, P (1980). Reactivation of temperature-sensitive and non-temperature-sensitive infectious bovine rhinotracheitis vaccine virus with dexamethasone. Infection and Immunity 29: 483488.CrossRefGoogle ScholarPubMed
Pavot, V, Rochereau, N, Genin, C, Verrier, B and Paul, S (2012). New insights in mucosal vaccine development. Vaccine 30: 142154.CrossRefGoogle ScholarPubMed
Ploegh, HL (1998). Viral strategies of immune evasion. Science 280: 248253.CrossRefGoogle ScholarPubMed
Quinlivan, M, Breuer, J and Schmid, DS (2011). Molecular studies of the Oka varicella vaccine. Expert Review of Vaccines 10: 13211336.CrossRefGoogle ScholarPubMed
Raggo, C, Fitzpatrick, DR, Babiuk, LA and Liang, X (1996). Expression of bovine interleukin-1 beta in a bovine herpesvirus-1 vector: in vitro analysis. Virology 221: 7886.CrossRefGoogle Scholar
Raggo, C, Habermehl, M, Babiuk, LA and Griebel, P (2000). The in vivo effects of recombinant bovine herpesvirus-1 expressing bovine interferon-gamma. Journal of General Virology 81: 26652673.CrossRefGoogle ScholarPubMed
Ratcliffe, MJH and Mitchison, NA (1984). Function of Ig receptors in B-cell triggering. Annales D Immunologie 135D: 7379.Google ScholarPubMed
Reading, SA and Dimmock, NJ (2007). Neutralization of animal virus infectivity by antibody. Archives of Virology 152: 10471059.CrossRefGoogle ScholarPubMed
Reinink, P and Van Rhijn, I (2009). The bovine T cell receptor alpha/delta locus contains over 400 V genes and encodes V genes without CDR2. Immunogenetics 61: 541549.CrossRefGoogle Scholar
Reizis, B, Bunin, A, Ghosh, HS, Lewis, KL and Sisirak, V (2011). Plasmacytoid dendritic cells: recent progress and open questions. Annual Review of Immunology 29: 163183.Google Scholar
Renjifo, X, Letellier, C, Keil, GM, Ismail, J, Vanderplasschen, A, Michel, P, Godfroid, J, Walravens, K, Charlier, G, Pastoret, P-P, Urbain, J, Denis, M, Moser, M and Kerkhofs, P (1999). Susceptibility of bovine antigen-presenting cells to infection by bovine herpesvirus 1 and in vitro presentation to T vells: two independent events. Journal of Virology 73: 48404846.CrossRefGoogle Scholar
Rogers, AN, VanBuren, DG, Hedblom, EE, Tilahun, ME, Telfer, JC and Baldwin, CL (2005). γδ T cell function varies with the expressed WC1 coreceptor. Journal of Immunology 174: 33863393.CrossRefGoogle ScholarPubMed
Roizman, B and Taddeo, B (2007). The strategy of herpes simplex virus replication and takeover of the host cell. Chapter 13 In: Arvin, A, Campadelli-Fiume, G, Mocarski, E, Moore, PS, Roizman, B, Whitley, R and Yamanishi, K (eds) Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge: Cambridge University Press, pp. 163173.Google Scholar
Roizman, B, Knipe, DM and Whitley, RJ (2007). Herpes simplex viruses. Chapter 67 In: Knipe, DM and Howley, PM (eds) Fields Virology. Philadelphia: Wolters Kluwer, pp. 25012601.Google Scholar
Rollinson, EA, White, G, Thiry, E, Dubuisson, J and Pastoret, PP (1988). Therapy of Aujeszky's disease (pseudorabies) in naturally infected and artificially inoculated piglets using BW B759U (9-[1,3-dihydroxy-2-propoxymethyl] guanine). Research in Veterinary Science 45: 5461.CrossRefGoogle ScholarPubMed
Roth, JA and Carter, DP (2000). Comparison of bovine herpesvirus 1 vaccines for rapid induction of immunity. Veterinary Therapeutics 1: 220228.Google ScholarPubMed
Roth, JA and Perino, LJ (1998). Immunology and prevention of infection in feedlot cattle. Veterinary Clinics of North America, Food Animal Practice 14: 233256.CrossRefGoogle ScholarPubMed
Rouse, BT and Babiuk, LA (1977). The direct antiviral cytotoxicity by bovine lymphocytes is not restricted by genetic incompatibility of lymphocytes and target cells. Journal of Immunology 118: 618624.CrossRefGoogle Scholar
Rouse, BT and Babiuk, LA (1978). Mechanisms of recovery from herpesvirus infections – a review. Canadian Journal of Comparative Medicine 42: 414427.Google Scholar
Rouse, BT, Wardley, RC and Babiuk, LA (1976). Antibody-dependent cell-mediated cytotoxicity in cows: comparison of effector cell activity against heterologous erythrocyte and herpesvirus-infected bovine target cells. Infection and Immunity 13: 14331441.CrossRefGoogle ScholarPubMed
Ruprecht, CR and Lanzavecchia, A (2006). Toll-like receptor stimulation as a third signal required for activation of human naive B cells. European Journal of Immunology 36: 810816.CrossRefGoogle ScholarPubMed
Saini, SS, Hein, WR and Kaushik, A (1997). A single predominantly expressed polymorphic immunoglobulin VH gene family, related to mammalian group I, clan II, is identified in cattle. Molecular Immunology 34: 641651.CrossRefGoogle Scholar
Salak-Johnson, JL and McGlone, JJ (2007). Making sense of apparently conflicting data: stress and immunity in swine and cattle. Journal of Animal Science 85: E8188.CrossRefGoogle ScholarPubMed
Schmitt, J and Keil, GM (1998). Characterization of the bovine herpesvirus 1 UL8 gene and gene products. Journal of General Virology 79: 133141.CrossRefGoogle ScholarPubMed
Schoenborn, JR and Wilson, CB (2007). Regulation of interferon-gamma during innate and adaptive immune responses. Advances in Immunology 96: 41101.CrossRefGoogle ScholarPubMed
Schrijver, RS, Langedijk, JP, Keil, GM, Middel, WG, Maris-Veldhuis, M, Van Oirschot, JT and Rijsewijk, FA (1997). Immunization of cattle with a BHV-1 vector vaccine or a DNA vaccine both coding for the G protein of BRSV. Vaccine 15: 19081916.CrossRefGoogle ScholarPubMed
Schuster, P, Boscheinen, JB, Tennert, K and Schmidt, B (2011). The role of plasmacytoid dendritic cells in innate and adaptive immune responses against alpha herpes virus infections. Advances in Virology Article ID 679271 2011: 12. doi:10.1155/2011/679271.CrossRefGoogle ScholarPubMed
Schwyzer, M and Ackermann, M (1996). Molecular virology of ruminant herpesviruses. Veterinary Microbiology 53: 1729.CrossRefGoogle ScholarPubMed
Schynts, F, Meurens, F, Detry, B, Vanderplasschen, A and Thiry, E (2003). Rise and survival of bovine herpesvirus 1 recombinants after primary infection and reactivation from latency. Journal of Virology 77: 1253512542.CrossRefGoogle ScholarPubMed
Shah, AC, Parker, JN, Shimamura, M and Cassady, KA (2009). Spontaneous and engineered compensatory HSV mutants that counteract the host antiviral PKR response. Viruses 1: 510522.Google Scholar
Shiau, A-L, Chen, Y-L, Liao, C-Y, Huang, Y-S and Wu, C-L (2001). Prothymosin α enhances protective immune responses induced by oral DNA vaccination against pseudorabies delivered by Salmonella choleraesuis. Vaccine 19: 39473956.CrossRefGoogle ScholarPubMed
Shojaei, F, Saini, SS and Kaushik, AK (2003). Unusually long germline DH genes contribute to large sized CDR3H in bovine antibodies. Molecular Immunology 40: 6167.CrossRefGoogle ScholarPubMed
Sinclair, MC, Gilchrist, J and Aitken, R (1995). Molecular characterization of bovine Vh regions. Journal of Immunology 155: 30683078.CrossRefGoogle Scholar
Singer, A, Adoro, S and Park, J-H (2008). Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nature Reviews Immunology 8: 788801.Google Scholar
Singh, R and Cresswell, P (2010). Defective cross-presentation of viral antigens in GILT-free mice. Science 328: 13941398.CrossRefGoogle ScholarPubMed
Smith, GA, Young, PL and Reed, KC (1995). Emergence of a new bovine herpesvirus 1 strain in Australian feedlots. Archives of Virology 140: 599603.CrossRefGoogle ScholarPubMed
Spickler, AR and Roth, JA (2003). Adjuvants in Veterinary Vaccines: modes of Action and Adverse Effects. Journal of Veterinary Internal Medicine 17: 273281.CrossRefGoogle ScholarPubMed
Splitter, GA, Eskra, L and Abruzzini, AF (1988). Cloned bovine cytolytic T cells recognize bovine herpes virus-1 in a genetically restricted, antigen-specific manner. Immunology 63: 145150.Google Scholar
Srikumaran, S, Onisk, DV, Borca, MV, Nataraj, C and Zamb, TJ (1990). Anti-idiotypic antibodies induce neutralizing antibodies to bovine herpesvirus 1. Immunology 70: 284289.Google ScholarPubMed
Srikumaran, S, Kelling, CL and Ambagala, A (2007). Immune evasion by pathogens of bovine respiratory disease complex. Animal Health Research Reviews 8: 215229.CrossRefGoogle ScholarPubMed
Steinman, RM and Hemmi, H (2006). Dendritic cells: translating innate to adaptive immunity. Current Topics in Microbiology and Immunology 311: 1758.Google ScholarPubMed
St. George, TD, Snowdon, WA, Parsonson, IM and French, EL (1967). A serological survey of mucosal disease and infectious bovine rhinotracheitis in cattle in Australia and New Guinea. Australian Veterinary Journal 43: 549557.CrossRefGoogle ScholarPubMed
Straub, OC (1990). Infectious bovine rhinotracheitis virus.. In: Dinter, Z, Morein, B (eds) Virus Infections of Ruminants. Chap 11, Vol. 3. Virus infections of Vertebrates. New York, NY: Elsevier Science, pp. 71108.CrossRefGoogle Scholar
Strube, W, Auer, S, Block, W, Heinen, E, Kretzdom, D, Rodenbach, C and Schmeer, N (1996). A gE deleted infectious bovine rhinotracheitis marker vaccine for use in improved bovine herpesvirus 1 control programs. Veterinary Microbiology 53: 181189.CrossRefGoogle Scholar
Taylor, GS, Mautner, J and Münz, C (2011). Autophagy in herpesvirus immune control and immune escape. Herpesviridae 2: 2.CrossRefGoogle ScholarPubMed
Taylor, J, Meignier, B, Tartaglia, J, Languet, B, VanderHoeven, J, Franchini, G, Trimarchi, C and Paoletti, E (1995). Biological and immunogenic properties of a canarypox-rabies recombinant, ALVAGRk (vCP65) in non-avian species. Vaccine 13: 539549.Google Scholar
Teng, G and Papavasiliou, FN (2007). Immunoglobulin somatic hypermutation. Annual Review of Genetics 41: 107120.CrossRefGoogle ScholarPubMed
The Bovine Genome Sequencing and Analysis Consortium, Elsik, CG, Tellam, RL and Worley, KC (2009). The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324: 522528.Google ScholarPubMed
Theil, D, Derfuss, T, Paripovic, I, Herberger, S, Meinl, E, Schueler, O, Strupp, M, Arbusow, V and Brandt, T (2003). Latent herpesvirus infection in human trigeminal ganglia causes chronic immune response. American Journal of Pathology 163: 21792184.CrossRefGoogle ScholarPubMed
Theil, KW, Mohanty, SB and Hetrick, FM (1971). Effect of poly I:C on infectious bovine rhinotracheitis virus infection in calves. Proceedings, Society Experimental Biology and Medicine 137: 11761179.CrossRefGoogle ScholarPubMed
Thiry, E, Meurens, F, Muylkens, B, McVoy, M, Gogev, S, Thiry, J, Vanderplasschen, A, Epstein, A, Keil, G and Schynts, F (2005). Recombination in alphaherpesviruses. Review of Medical Virology 15: 89103.CrossRefGoogle ScholarPubMed
Tikoo, SK, Campos, M and Babiuk, LA (1995a). Bovine herpesvirus 1 (BHV-1): biology, pathogenesis, and control. Advances in Virus Research 45: 191222.Google Scholar
Tikoo, SK, Campos, M, Popowych, YI, van Drunen Littel-van den, Hurk S and Babiuk, LA (1995b). Lymphocyte proliferative responses to recombinant bovine herpes virus type 1 (BHV-1) glycoprotein gD (gIV) in immune cattle: identification of a T cell epitope. Viral Immunology 8: 1925.CrossRefGoogle ScholarPubMed
Toka, FN, Kenney, MA and Golde, WT (2011). Rapid and transient activation of γδ T cells to IFN-g production, NK cell-like killing, and antigen processing during acute virus infection. Journal of Immunology 186: 48534861.Google Scholar
Trudel, M, Boulay, G, Séguin, C, Nadon, F and Lussier, G (1988). Control of infectious bovine rhinotracheitis in calves with a BHV-1 subunit-ISCOM vaccine. Vaccine 6: 525529.CrossRefGoogle ScholarPubMed
Tsuda, T, Onodera, T, Sugimura, T, Murakami, Y (1992). Induction of protective immunity and neutralizing antibodies to pseudorabies virus by immunization of anti-idiotypic antibodies. Archives of Virology 124: 291300.CrossRefGoogle ScholarPubMed
Turin, L, Russo, S and Poli, G (1999). BHV-1: new molecular approaches to control a common and widespread infection. Molecular Medicine 5: 261284.CrossRefGoogle ScholarPubMed
van der Meulen, K, Garré, B, Croubels, S and Nauwynck, H (2006). In vitro comparison of antiviral drugs against feline herpesvirus 1. BioMed Central Veterinary Research 2: 13. doi:10.1186/1746-6148-2-13.Google ScholarPubMed
Vander Veen, RL, Harris, DLH and Kamrud, KI (2012). Alphavirus replicon vaccines. Animal Health Research Reviews 13: 19.Google Scholar
van Drunen Littel-van den, Hurk S (2006). Rationale and perspectives on the success of vaccination against bovine herpesvirus-1. Veterinary Microbiology 113: 275282.CrossRefGoogle Scholar
van Drunen Littel-van den, Hurk S (2007). Cell-mediated immune responses induced by BHV-1: rational vaccine design. Expert Review of Vaccines 6: 369380.CrossRefGoogle Scholar
van Drunen Littel-van den, Hurk S, Zamb, T and Babiuk, LA (1989). Synthesis, cellular location, and immunogenicity of bovine herpesvirus 1 glycoproteins gI and gIII expressed by recombinant vaccinia virus. Journal of Virology 63: 21592168.CrossRefGoogle Scholar
van Drunen Littel-van den, Hurk S, Parker, MD, Massie, B, van den Hurk, JV, Harland, R, Babiuk, LA and Zamb, TJ (1993). Protection of cattle from BHV-1 infection by immunization with recombinant glycoprotein gIV. Vaccine 11: 2535.CrossRefGoogle Scholar
van Drunen Littel-van den, Hurk S, Van Donkersgoed, J, Kowalski, J, van den Hurk, JV, Harland, R, Babiuk, LA and Zamb, TJ (1994). A subunit gIV vaccine, produced by transfected mammalian cells in culture, induces mucosal immunity against bovine herpesvirus-1 in cattle. Vaccine 12: 12951302.CrossRefGoogle Scholar
van Drunen Littel-van den, Hurk S, Braun, RP, Lewis, PJ, Karvonen, BC, Baca-Estrada, ME, Snider, M, McCartney, D, Watts, T and Babiuk, LA (1998). Intradermal immunization with a bovine herpesvirus-1 DNA vaccine induces protective immunity in cattle. Journal of General Virology 79: 831839.CrossRefGoogle Scholar
van Drunen Littel-van den, Hurk S, Snider, M, Thompson, P, Latimer, L and Babiuk, LA (2008). Strategies for induction of protective immunity to bovine herpesvirus-1 in newborn calves with maternal antibodies. Vaccine 26: 31033111.CrossRefGoogle Scholar
van Oirschot, JT (1999). Diva vaccines that reduce virus transmission. Journal of Biotechnology 73: 195205.CrossRefGoogle ScholarPubMed
van Oirschot, JT, Kaashoek, MJ and Rijsewijk, FAM (1996). Advances in the development and evaluation of bovine herpesvirus 1 vaccines. Veterinary Microbiology 53: 4354.CrossRefGoogle ScholarPubMed
van Oirschot, JT, Kaashoek, MJ, Maris-Veldhuis, MA and Rijsewijk, FAM (1999). Strains of bovine herpesvirus 1 that do not express an epitope on glycoprotein E in cell culture still induce antibodies that can be detected in a gE-blocking ELISA. Veterinary Microbiology 65: 103113.CrossRefGoogle ScholarPubMed
Verweij, MC, Koppers-Lalic, D, Loch, S, Klauschies, F, de la Salle, H, Quinten, E, Lehner, PJ, Mulder, A, Knittler, MR, Tampé, R, Koch, J, Ressing, ME and Wiertz, EJHJ (2008). The varicellovirus UL49.5 protein blocks the transporter associated with antigen processing (TAP) by inhibiting essential conformational transitions in the 6+6 transmembrane TAP core complex. Journal of Immunology 181: 48944907.CrossRefGoogle Scholar
Vesosky, B, Turner, OC, Turner, J and Orme, IM (2003). Activation marker expression on bovine peripheral blood gammadelta T cells during post-natal development and following vaccination with a commercial polyvalent viral vaccine. Developmental and Comparative Immunology 27: 439447.CrossRefGoogle ScholarPubMed
Wang, C and Splitter, GA (1998). CD41 cytotoxic T-lymphocyte activity against macrophages pulsed with bovine herpesvirus 1 polypeptides. Journal of Virology 72: 70407047.CrossRefGoogle Scholar
Wei, H, Wang, Y and Chowdhury, SI (2011). Bovine herpesvirus type 1 (BHV-1) UL49.5 luminal domain residues 30 to 32 are critical for MHC-I down-regulation in virus-infected cells. PLoS ONE 6: e25742. doi:10.1371/journal.pone.0025742.CrossRefGoogle ScholarPubMed
Wei, H, He, J, Paulsen, DB and Chowdhury, SI (2012). Bovine herpesvirus type 1 (BHV-1) mutant lacking UL49.5 luminal domain residues 30–32 and cytoplasmic tail residues 80–96 induces more rapid onset of virus neutralizing antibody and cellular immune responses in calves than the wild-type strain Cooper. Veterinary Immunology and Immunopathology 147: 223229.CrossRefGoogle Scholar
Wessman, SJ and Levings, RL (1999). Benefits and risks due to animal serum used in cell culture production. Developments in Biological Standardization 99: 38.Google Scholar
Whetstone, CA, Wheeler, JG and Reed, DE (1986). Investigation of possible vaccine-induced epizootics of infectious bovine rhinotracheitis, using restriction endonuclease analysis of viral DNA. American Journal of Veterinary Research 47: 17891795.Google ScholarPubMed
Whitbeck, JC, Knapp, AC, Enquist, LW, Lawrence, WC and Bello, LJ (1996). Synthesis, processing, and oligomerization of bovine herpesvirus 1 gE and gI membrane proteins. Journal of Virology 70: 78787884.CrossRefGoogle ScholarPubMed
Wilbur, LA, Evermann, JF, Levings, RL, Stoll, IR, Starling, DE, Spillers, CA, Gustafson, GA and McKeirnan, AJ (1994). Abortion and death in pregnant bitches associated with a canine vaccine contaminated with bluetongue virus. Journal of the American Veterinary Medical Association 204: 17621765.CrossRefGoogle ScholarPubMed
Wilkins, PA, Henninger, R, Reed, SM and Del Piero, F (2003). Acyclovir as treatment for EHV-1 myeloencephalopathy. American Association of Equine Practitioners Proceedings 49: 394396.Google Scholar
Wilson, E, Hedges, JF, Butcher, EC, Briskin, M and Jutila, MA (2002). Bovine γδ T cell subsets express distinct patterns of chemokine responsiveness and adhesion molecules: a mechanism for tissue-specific γδ T cell subset accumulation. Journal of Immunology 169: 49704975.CrossRefGoogle ScholarPubMed
Winkler, MTC, Doster, A and Jones, C (1999). Bovine herpesvirus 1 can infect CD4+ T lymphocytes and induce programmed cell death during acute infection of cattle. Journal of Virology 73: 86578668.CrossRefGoogle ScholarPubMed
Wuyckhuise, L, Van Bosch, J, Franken, P, Hage, J, Verhoeff, J and Zimmer, G (1994). The prevalence of infectious bovine rhinotracheitis (IBR) in the Netherlands. In: 18th World Buiatrics Congress, Bologna,Italy, pp. 14391442.Google Scholar
Wyler, R, Engels, M and Schwyzer, M (1989). Infectious bovine rhinotracheitis/vulvovaginitis (BHV-1). In: Wittmann, G (ed.) Herpesvirus Diseases of Cattle, Horses and Pigs. Boston, MA: Kluwer Academic, pp. 172.Google Scholar
Yan, BF, Chao, YJ, Chen, Z, Tian, KG, Wang, CB, Lin, XM, Chen, HC and Guo, AZ (2008). Serological survey of bovine herpesvirus type 1 infection in China. Veterinary Microbiology 127: 136141.Google Scholar
Zakhartchouk, AN, Pyne, C, Mutwiri, GK, Papp, Z, Baca-Estrada, ME, Griebel, P, Babiuk, LA and Tikoo, SK (1999). Mucosal immunization of calves with recombinant bovine adenovirus-3: induction of protective immunity to bovine herpesvirus-1. Journal of General Virology 80: 12631269.CrossRefGoogle ScholarPubMed
Zhao, X and Xi, J (2011). The vaccines for bovine herpesvirus type 1: a review. African Journal of Biotechnology 10: 1007210075.Google Scholar
Zhao, Y, Kacskovics, I, Rabbani, H and Hammarström, L (2003). Physical mapping of the bovine immunoglobulin heavy chain constant region gene locus. Journal of Biological Chemistry 278: 3502435032.CrossRefGoogle ScholarPubMed
Zhou, EM and Afshar, A (1995). Comparison of Freund's adjuvant and TiterMax in inducing anti-idiotype to idiotypic antibodies against pseudorabies virus antigens. Veterinary Immunology and Immunopathology 48: 113122.CrossRefGoogle ScholarPubMed
Zimin, AV, Delcher, AL, Florea, L, Kelley, DR, Schatz, MC, Puiu, D, Hanrahan, F, Pertea, G, Van Tassell, CP, Sonstegard, TS, Marçais, G, Roberts, M, Subramanian, P, Yorke, JA and Salzberg, SL (2009). A whole-genome assembly of the domestic cow, Bos Taurus. Genome Biology 10: R42. doi:10.1186/gb-2009-10-4-r42b.CrossRefGoogle ScholarPubMed