Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-18T07:49:34.651Z Has data issue: false hasContentIssue false

Transfer of energy substrates across the ruminal epithelium: implications and limitations

Published online by Cambridge University Press:  09 March 2007

G. Gäbel*
Affiliation:
Veterinär-Physiologisches Institut, Universität Leipzig, Germany.
J. R. Aschenbach
Affiliation:
Veterinär-Physiologisches Institut, Universität Leipzig, Germany.
F. Müller
Affiliation:
Veterinär-Physiologisches Institut, Universität Leipzig, Germany.
*
*Corresponding author: Veterinär-Physiologisches Institut, Universität Leipzig, An den Tierkliniken 7, D-04103 Leipzig, Germany E-mail: gaebel@rz.uni-leipzig.de.

Abstract

The ruminal epithelium has an enormous capacity for the absorption of short-chain fatty acids (SCFAs). This not only delivers metabolic energy to the animal but is also an essential regulatory mechanism that stabilizes the intraruminal milieu. The epithelium itself, however, is endangered by the influx of SCFAs because the intracellular pH (pHi) may drop to a lethal level. To prevent severe cytosolic acidosis, the ruminal epithelium is able to extrude (or buffer) protons by various mechanisms: (i) a Na+/H+ exchanger, (ii) a bicarbonate importing system and (iii) an H+/monocarboxylate cotransporter (MCT). Besides pHi regulation, the MCT also provides the animal with ketone bodies derived from the intraepithelial breakdown of SCFAs. Ketone bodies, in turn, can serve as an energy source for extrahepatic tissues. In addition to SCFA uptake, glucose absorption has recently been identified as a potential way of eliminating acidogenic substrates from the rumen. At least with respect to SCFAs, absorption rates can be elevated when adapting animals to energy-rich diets. Although they are very effective under physiological conditions, the absorptive and regulatory mechanisms of the ruminal epithelium also have their limits. An increased number of protons during the state of ruminal acidosis can be eliminated neither from the lumen nor the cytosol, thus worsening dysfermentation and finally leading to functional and morphological alterations of the epithelial lining.

Type
Research Article
Copyright
Copyright © CAB International 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aafjes, JH (1967) The disappearance of volatile fatty acids through the rumen wall. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 22: 6975.Google ScholarPubMed
Abrahamse, SL, Pool-Zobel, BL and Rechkemmer, G (1999) Potential of short chain fatty acids to modulate the induction of DNA damage and changes in the intracellular calcium concentration by oxidative stress in isolated rat distal colon cells. Carcinogenesis 20: 629634.CrossRefGoogle Scholar
Aiello, RJ, Armentano, LE, Bertics, SJ and Murphy, AT (1989) Volatile fatty acid uptake and propionate metabolism in ruminant hepatocytes. Journal of Dairy Science 72: 942949.CrossRefGoogle ScholarPubMed
Amasaki, H, Matsumoto, S and Daigo, M (1991) Distributions of fibronectin, laminin, type I and IV collagens and carbonic anhydrase isozyme III during bovine ruminal epithelial development. Acta Anatomica 140: 169174.CrossRefGoogle ScholarPubMed
Armentano, LE (1992) Ruminant hepatic metabolism of volatile fatty acids, lactate and pyruvate. Journal of Nutrition 122: 838842.CrossRefGoogle ScholarPubMed
Asari, M, Sasaki, K, Kano, Y and Nishita, T (1989) Immunohistochemical localization of carbonic anhydrase isozymes I, II and III in the bovine salivary glands and stomach. Archives of Histology and Cytology 52: 337344.CrossRefGoogle ScholarPubMed
Aschenbach, JR, Bhatia, S, Pfannkuche, H and Gäbel, G (2000) Glucose is absorbed in a sodium-dependent manner from the forestomach contents of sheep. Journal of Nutrition 130: 27922801.CrossRefGoogle Scholar
Aschenbach, JR, Oswald, R and Gäbel, G (2000) Transport, catabolism and release of histamine in the ruminal epithelium of sheep. Pflügers Archiv, European Journal of Physiology 440: 171178.CrossRefGoogle Scholar
Aschenbach, JR, Wehning, H, Kurze, M, Schaberg, E, Nieper, H, Burckhardt, G and Gäbel, G (2000) Functional and molecular biological evidence of SGLT-1 in the ruminal epithelium of sheep. American Journal of Physiology, Gastrointestinal and Liver Physiology 279: G20-G27.CrossRefGoogle ScholarPubMed
Ash, R and Baird, GD (1973) Activation of volatile fatty acids in bovine liver and rumen epithelium. Evidence for control by autoregulation. Biochemical Journal 136: 311319.CrossRefGoogle ScholarPubMed
Ash, RW and Dobson, A (1963) The effect of absorption on the acidity of rumen contents. Journal of Physiology 169: 3961.CrossRefGoogle ScholarPubMed
Baldwin, RL and Allison, MJ (1983) Rumen metabolism. Journal of Animal Science 57 (Supplement 2), 461477.Google Scholar
Baldwin, RL and Jesse, BW (1991) Technical note: isolation and characterization of sheep ruminal epithelial cells. Journal of Animal Science 69: 36033609.CrossRefGoogle ScholarPubMed
Baldwin, RL and Jesse, BW (1992) 6th Developmental changes in glucose and butyrate metabolism by isolated sheep ruminal cells. Journal of Nutrition 122: 11491153.CrossRefGoogle Scholar
Baldwin, RL and Jesse, BW (1996) Propionate modulation of ruminal ketogenesis. Journal of Animal Science 74: 16941700.CrossRefGoogle ScholarPubMed
Baldwin, RL and McLeod, KR (2000) Effects of diet forage:concentrate ratio and metabolizable energy intake on isolated rumen epithelial cell metabolism in vitro. Journal of Animal Science 78: 771783.CrossRefGoogle ScholarPubMed
Bergman, EN (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews 70: 567590.CrossRefGoogle ScholarPubMed
Bond, J, Slyter, LL and Rumsey, TS (1984) Influence of fasting and refeeding high forage and all-concentrate diets on beef heifers. Growth 48: 354369.Google Scholar
Borau, T, Aschenbach, JR and Gäbel, G (2001) Apikale Glukose-Aufnahme in das Pansenepithel von Schafen: Nachweis der Regulierbarkeit. Bericht des 24. Kongresses der Deutschen Veterinärmedizinischen Gesellschaft. Giessen: Deutsche Veterinärmedizinische Gesellschaft, pp. 357361.Google Scholar
Breves, G and Stück, K (1995) Short-chain fatty acids in the hindgut. In: Cummings, JH, Rombeau, JL and Sakata, T (editors). Physiological and Clinical Aspects of Short-Chain Fatty Acids. Cambridge: Cambridge University Press, pp. 7386.Google Scholar
Britton, R and Krehbiel, C (1993) Nutrient metabolism by gut tissues. Journal of Dairy Science 76: 21252131.CrossRefGoogle ScholarPubMed
Bugaut, M (1987) Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comparative Biochemistry and Physiology B 86: 439472.CrossRefGoogle ScholarPubMed
Carter, MJ (1971) The carbonic anhydrase in the rumen epithelial tissue of the ox. Biochimica et Biophysica Acta 235: 222236.CrossRefGoogle ScholarPubMed
Charney, AN, Micic, L and Egnor, RW (1998) Nonionic diffusion of short-chain fatty acids across rat colon. American Journal of Physiology, Gastrointestinal and Liver Physiology 274: G518G524.CrossRefGoogle ScholarPubMed
Dabbagh, MN, Fürll, M and Schäfer, M (1989) Subacute butyric acid burden in cattle. 1. Clinical results and effects on the carbohydrate–fat metabolism and the liver function of young fattening bulls. Archiv für Experimentelle Veterinärmedizin 43: 427435.Google ScholarPubMed
Diernaes, L, Sehested, J, Moller, PD and Skadhauge, E (1994) Sodium and chloride transport across the rumen epithelium of cattle in vitro: effect of short-chain fatty acids and amiloride. Experimental Physiology 79: 755762.CrossRefGoogle ScholarPubMed
Dijkstra, J, Boer, H, Van Bruchem, J, Bruining, M and Tamminga, S (1993) Absorption of volatile fatty acids from the rumen of lactating dairy cows as influenced by volatile fatty acid concentration, pH and rumen liquid volume. British Journal of Nutrition 69: 385396.CrossRefGoogle ScholarPubMed
Dirksen, G (1970) Acidosis. In: Phillipson, AT (editor). Physiology of Digestion and Metabolism in the Ruminant. Newcastle-upon-Tyne: Oriel Press, pp. 612625.Google Scholar
Dirksen, G (1985) Der Pansenazidose-Komplex—neuere Erkenntnisse und Erfahrungen (1). Tierärztliche Praxis 13: 501512.Google ScholarPubMed
Dirksen, G (1986) Der Pansenazidose-Komplex—neuere Erkenntnisse und Erfahrungen (2). Tierärztliche Praxis 14: 2333.Google ScholarPubMed
Dirksen, G, Ahrens, F, Schoen, J and Liebich, HG (1992) Vorbereitungsfütterung der trockenstehenden Kuh im Hinblick auf Ernährungszustand und Status von Pansenschleimhaut und Pansenflora bei der Kalbung. Berliner und Münchener Tierärztliche Wochenschrift 105: 14.Google Scholar
Dirksen, G, Liebich, HG, Brosi, G, Hagemeister, H and Mayer, E (1984) Morphologie der Pansenschleimhaut und Fettsäureresorption beim Rind—bedeutende Faktoren für Gesundheit und Leistung. Zentralblatt für Veterinärmedizin A 31: 414430.CrossRefGoogle Scholar
Dobson, A (1984) Blood flow and absorption from the rumen. Quarterly Journal of Experimental Physiology 69: 599606.CrossRefGoogle ScholarPubMed
Elam, CJ (1976) Acidosis in feedlot cattle: practical observations. Journal of Animal Science 43: 898901.CrossRefGoogle ScholarPubMed
Engelhardt, W von (1995) Absorption of short-chain fatty acids in the ruminant forestomach. In: Cummings, JH, Rombeau, JL and Sakata, T (editors). Physiological and Clinical Aspects of Short-Chain Fatty Acids. Cambridge: Cambridge University Press, pp. 149170.Google Scholar
Engelhardt, W von and Hauffe, R (1975) Funktionen des Blättermagens bei kleinen Hauswiederkäuern. IV. Resorption und Sekretion von Elektrolyten. Zentralblatt für Veterinärmedizin 22: 363375.Google Scholar
Fahey, GC Jr and Berger, LL (1988) Carbohydrate nutrition of ruminants. In: Church, DC (editor). The Ruminant Animal. Digestive Physiology and Nutrition. 1st edn. Englewood Cliffs, New Jersey: Prentice Hall, pp. 269297.Google Scholar
Fisler, JS, Egawa, M and Bray, GA (1995) Peripheral 3-hydroxybutyrate and food intake in a model of dietary fat induced obesity: effect of vagotomy. Physiology and Behavior 58: 17.CrossRefGoogle Scholar
Fleming, SE, Zambell, KL and Fitch, MD (1997) Glucose and glutamine provide similar proportions of energy to mucosal cells of rat small intestine. American Journal of Physiology, Gastrointestinal and Liver Physiology 273: G968G978.CrossRefGoogle ScholarPubMed
Fürll, M, Dabbagh, MN and Schäfer, M (1990) Subacute butyric acid exposure in cattle. 5. Effect on the acid–base equilibrium and protein metabolism in cows. Archiv für Experimentelle Veterinärmedizin 44: 831839.Google ScholarPubMed
Gäbel, G (1990) Pansenazidose: Interaktionen zwischen den Veränderungen im Lumen und in der Wand des Pansens. Übersichten zur Tierernährung 18: 138.Google Scholar
Gäbel, G and Martens, H (1991) Transport of Na and Cl across forestomach epithelium: mechanisms and interactions with short-chain fatty acids. In: Tsuda, T, Sasaki, Y and Kawashima, R (editors). Physiological Aspects of Digestion and Metabolism in Ruminants. Orlando, Florida: Academic Press, pp. 129151.CrossRefGoogle Scholar
Gäbel, G, Bestmann, M and Martens, H (1991) Influences of diet, short-chain fatty acids, lactate and chloride on bicarbonate movement across the reticulo-rumen wall of sheep. Journal of Veterinary Medicine A 38: 523529.CrossRefGoogle ScholarPubMed
Gäbel, G, Marek, M and Martens, H (1993) Influence of food deprivation on SCFA and electrolyte transport across sheep reticulorumen. Journal of Veterinary Medicine A 40: 339344.CrossRefGoogle ScholarPubMed
Gäbel, G, Butter, H and Martens, H (1999) Regulatory role of cAMP in transport of Na+, Cl and short-chain fatty acids across sheep ruminal epithelium. Experimental Physiology 84: 333345.CrossRefGoogle Scholar
Gäbel, G, Müller, F, Pfannkuche, H and Aschenbach, JR (2001) Influence of isoform and DNP on butyrate transport across the sheep ruminal epithelium. Journal of Comparative Physiology B, Biochemical Systemic, and Environmental Physiology 171: 215221.Google ScholarPubMed
Gaebel, G, Martens, H, Suendermann, M and Gálfi, P (1987) The effect of diet, intraruminal pH and osmolarity on sodium, chloride and magnesium absorption from the temporarily isolated and washed reticulo-rumen of sheep. Quarterly Journal of Experimental Physiology 72: 501511.CrossRefGoogle ScholarPubMed
Gaebel, G, Bell, M and Martens, H (1989) The effect of low mucosal pH on sodium and chloride movement across the isolated rumen mucosa of sheep. Quarterly Journal of Experimental Physiology 74: 3544.CrossRefGoogle ScholarPubMed
Gálfi, P, Neogrády, S and Kutas, F (1986) Dissimilar ruminal epithelial response to short-term and continuous intraruminal infusion of sodium n-butyrate. Journal of Veterinary Medicine A 33: 4752.CrossRefGoogle ScholarPubMed
Gálfi, P, Neogrády, S and Sakata, T (1991) Effects of volatile fatty acids on the epithelial cell proliferation of the digestive tract and its hormonal mediation. In: Tsuda, T, Sasaki, Y and Kawashima, R (editors). Physiological Aspects of Digestion and Metabolism in Ruminants. San Diego: Academic Press, pp. 4959.CrossRefGoogle Scholar
Gálfi, P, Gäbel, G and Martens, H (1993) Influences of extracellular matrix components on the growth and differentiation of ruminal epithelial cells in primary culture. Research in Veterinary Science 54: 102109.CrossRefGoogle ScholarPubMed
Ganter, M, Bickhardt, K, Winicker, M and Schwert, B (1993) Experimental studies of the pathogenesis of rumen acidosis in sheep. Journal of Veterinary Medicine A 40: 731740.CrossRefGoogle ScholarPubMed
Giesecke, D and Stangassinger, M (1980) Lactic acid metabolism. In: Ruckebusch, Y and Thivend, P (editors). Digestive Physiology and Metabolism in Ruminants. Westport, Connecticut: Avi Publishing Company, pp. 523539.CrossRefGoogle Scholar
Giesecke, D, Beck, U, Wiesmayr, S and Stangassinger, M (1979) The effect of rumen epithelial development on metabolic activities and ketogenesis by the tissue in vitro. Comparative Biochemistry and Physiology B 62: 459463.CrossRefGoogle ScholarPubMed
Giesecke, D, Beck, U and Emmanuel, B (1985) Ketogenic regulation by certain metabolites in rumen epithelium. Comparative Biochemistry and Physiology B 81: 863867.CrossRefGoogle ScholarPubMed
Goodlad, RA (1981) Some effects of diet on the mitotic index and the cell cycle of the ruminal epithelium of sheep. Quarterly Journal of Experimental Physiology 66: 487499.CrossRefGoogle ScholarPubMed
Halestrap, AP and Price, NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochemical Journal 343: 281299.CrossRefGoogle ScholarPubMed
Harmon, DL, Gross, KL, Krehbiel, CR, Kreikemeier, KK, Bauer, ML and Britton, RA (1991) Influence of dietary forage and energy intake on metabolism and acyl-CoA synthetase activity in bovine ruminal epithelial tissue. Journal of Animal Science 69: 41174127.CrossRefGoogle Scholar
Heitmann, RN, Dawes, DJ and Sensenig, SC (1987) Hepatic ketogenesis and peripheral ketone body utilization in the ruminant. Journal of Nutrition 117: 11741180.CrossRefGoogle ScholarPubMed
Holtenius, P and Holtenius, K (1996) New aspects of ketone bodies in energy metabolism of dairy cows: a review. Journal of Veterinary Medicine A 43: 579587.CrossRefGoogle ScholarPubMed
Huntington, GB (1990) Energy metabolism in the digestive tract and liver of cattle: influence of physiological state and nutrition. Reproduction, Nutrition, Development 30: 3547.CrossRefGoogle ScholarPubMed
Inan, MS, Rasoulpour, RJ, Yin, L, Hubbard, AK, Rosenberg, DW and Giardina, C (2000) The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology 118: 724734.CrossRefGoogle Scholar
Jeroch, D, Drochner, W and Simon, O (1999). Ernährung Landwirtschaftlicher Nutztiere: Ernährungsphysiologie, Futtermittelkunde, Fütterung. Stuttgart: UTB.Google Scholar
Jesse, BW, Solomon, RK and Baldwin, RL (1992) Palmitate metabolism by isolated sheep rumen epithelial cells. Journal of Animal Science 70: 22352242.CrossRefGoogle ScholarPubMed
Jordan, HN and Phillips, RW (1978) Effect of fatty acids on isolated ovine pancreatic islets. American Journal of Physiology, Endocrinology and Metabolism 234: E162E167.CrossRefGoogle ScholarPubMed
Kajikawa, H, Amari, M and Masaki, S (1997) Glucose transport by mixed ruminal bacteria from a cow. Applied and Environmental Microbiology 63: 18471851.CrossRefGoogle ScholarPubMed
Kaufmann, W, Hagemeister, H and Dirksen, G (1980) Adaptation to changes in dietary composition, level and frequency of feeding. In: Ruckebusch, Y and Thivend, P (editors). Digestive Physiology and Metabolism in Ruminants. Lancaster: MTP Press, pp. 587602.CrossRefGoogle Scholar
Kezar, WW and Church, DC (1979) Ruminal changes during the onset and recovery of induced lactic acidosis in sheep. Journal of Animal Science 49: 11611167.CrossRefGoogle ScholarPubMed
Kramer, T, Michelberger, T, Gürtler, H and Gäbel, G (1996) Absorption of short-chain fatty acids across ruminal epithelium of sheep. Journal of Comparative Physiology B, Biochemical, Systemic, and Environmental Physiology 166: 262269.CrossRefGoogle ScholarPubMed
Krehbiel, CR, Harmon, DL and Schnieder, JE (1992) Effect of increasing ruminal butyrate on portal and hepatic nutrient flux in steers. Journal of Animal Science 70: 904914.CrossRefGoogle ScholarPubMed
Kristensen, NB, Danfaer, A and Agergaard, N (1998) Absorption and metabolism of short-chain fatty acids in ruminants. Archiv für Tierernährung 51: 165175.CrossRefGoogle ScholarPubMed
Kristensen, NB, Danfaer, A, Tetens, V and Agergaard, N (1996) Portal recovery of intraruminally infused short-chain fatty acids in sheep. Acta Agriculturae Scandinavica A 46: 2638.Google Scholar
Kristensen, NB, Gäbel, G, Pierzynowski, SG and Danfaer, A (2000) Portal recovery of short-chain fatty acids infused into the temporarily isolated and washed reticulorumen of sheep. British Journal of Nutrition 84: 477482.CrossRefGoogle ScholarPubMed
Kristensen, NB, Pierzynowski, SG and Danfaer, A (2000) Net portal appearance of volatile fatty acids in sheep intraruminally infused with mixtures of acetate, propionate, isobutyrate, butyrate, and valerate. Journal of Animal Science 78: 13721379.CrossRefGoogle ScholarPubMed
Kristensen, NB, Pierzynowski, SG and Danfaer, A (2000) Portal-drained visceral metabolism of 3-hydroxybutyrate in sheep. Journal of Animal Science 78: 22232228.CrossRefGoogle ScholarPubMed
Langhans, W, Pantel, K and Scharrer, E (1985) Ketone kinetics and D-(–)-3-hydroxybutyrate-induced inhibition of feeding in rats. Physiology and Behavior 34: 579582.CrossRefGoogle Scholar
Leng, RA and Brett, DJ (1966) Simultaneous measurements of the rates of production of acetic, propionic and butyric acids in the rumen of sheep on different diets and the correlation between production rates and concentrations of these acids in the rumen. British Journal of Nutrition 20: 541552.CrossRefGoogle Scholar
Leng, RA, Steel, JW and Luick, JR (1967) Contribution of propionate to glucose synthesis in sheep. Biochemical Journal 103: 785790.CrossRefGoogle ScholarPubMed
Leng, RA, Corbett, JL and Brett, DJ (1968) Rates of production of volatile fatty acids in the rumen of grazing sheep and their relation to ruminal concentrations. British Journal of Nutrition 22: 5768.CrossRefGoogle ScholarPubMed
Leo, A, Hansch, C and Elkins, D (1971) Partition coefficients and their uses. Chemical Reviews 71: 525616.CrossRefGoogle Scholar
Leonhard-Marek, S and Martens, H (1996) Effects of potassium on magnesium transport across rumen epithelium. American Journal of Physiology—Gastrointestinal and Liver Physiology 271: G1034G1038.CrossRefGoogle ScholarPubMed
Lomax, MA and Baird, GD (1983) Blood flow and nutrient exchange across the liver and gut of the dairy cow. Effects of lactation and fasting. British Journal of Nutrition 49: 481496.CrossRefGoogle ScholarPubMed
López, S, Hovell, FDD and MacLeod, A (1994) Osmotic pressure, water kinetics and volatile fatty acid absorption in the rumen of sheep sustained by intragastric infusions. British Journal of Nutrition 71: 153168.CrossRefGoogle ScholarPubMed
Manns, JG and Boda, JM (1967) Insulin release by acetate, propionate, butyrate, and glucose in lambs and adult sheep. American Journal of Physiology 212: 747755.CrossRefGoogle ScholarPubMed
Martens, H and Gäbel, G (1988) Transport of Na and Cl across the epithelium of ruminant forestomachs: rumen and omasum. A review. Comparative Biochemistry and Physiology A 90: 569575.CrossRefGoogle ScholarPubMed
Martens, H, Gäbel, G and Strozyk, B (1991) Mechanism of electrically silent Na and Cl transport across the rumen epithelium of sheep. Experimental Physiology 76: 103114.CrossRefGoogle ScholarPubMed
Masson, MJ and Phillipson, AT (1951) The absorption of acetate, propionate and butyrate from the rumen of sheep. Journal of Physiology 113: 189206.CrossRefGoogle ScholarPubMed
Matthé, A, Lebzien, P and Flachowsky, G (2000) Zur Bedeutung von Bypass-Stärke für die Glucoseversorgung von hochleistenden Milchkühen. Übersichten Zur Tierernährung 28: 164.Google Scholar
Müller, F, Aschenbach, JR and Gäbel, G (2000) Role of Na+/H+ exchange and HCO3– transport in pHi recovery from intracellular acid load in cultured epithelial cells of the sheep rumen. Journal of Comparative Physiology B, Biochemical, Systemic, and Environmental Physiology 170: 337343.Google ScholarPubMed
Müller, F, Huber, K, Pfannkuche, H, Aschenbach, JR, Breves, G and Gäbel, G (2001) Functional characterization of the sheep ruminal monocarboxylate transporter (MCT1) using cultured ruminal epithelial cells [abstract]. Pflügers Archiv, European Journal of Physiology 441 (Supplement): R248.Google Scholar
Neogrády, S, Gálfi, P, Kutas, F and Sakata, T (1989) The effects of butyrate and glucagon on the proliferation of ruminal epithelial cells in culture. Veterinary Research Communications 13: 2729.CrossRefGoogle ScholarPubMed
Nisbet, DJ and Martin, SA (1994) Factors affecting L-lactate utilization by Selenomonas ruminantium. Journal of Animal Science 72: 13551361.CrossRefGoogle ScholarPubMed
Nocek, JE and Tamminga, S (1991) Site of digestion of starch in the gastrointestinal tract of dairy cows and its effect on milk yield and composition. Journal of Dairy Science 74: 35983629.CrossRefGoogle ScholarPubMed
Nocek, JE, Herbein, JH and Polan, CE (1980) Influence of ration physical form, ruminal degradable nitrogen and age on rumen epithelial propionate and acetate transport and some enzymatic activities. Journal of Nutrition 110: 23552364.CrossRefGoogle ScholarPubMed
Noziere, P, Martin, C, Remond, D, Kristensen, NB, Bernard, R and Doreau, M (2000) Effect of composition of ruminally-infused short-chain fatty acids on net fluxes of nutrients across portal-drained viscera in underfed ewes. British Journal of Nutrition 83: 521531.CrossRefGoogle ScholarPubMed
Ørskov, ER (1995) Utilization of short-chain fatty acids in ruminants. In: Cummings, JH, Rombeau, JL and Sakata, T (editors). Physiological and Clinical Aspects of Short-Chain Fatty Acids. Cambridge: Cambridge University Press, pp. 243256.Google Scholar
Oshio, S and Tahata, I (1984) Absorption of dissociated volatile fatty acids through the rumen wall of sheep. Canadian Journal of Animal Science 64(Supplement): 167168.CrossRefGoogle Scholar
Owens, FN, Secrist, DS, Hill, WJ and Gill, DR (1998) Acidosis in cattle: a review. Journal of Animal Science 76: 275286.CrossRefGoogle ScholarPubMed
Peters, JP, Shen, RYW, Robinson, JA and Chester, ST (1990) Disappearance and passage of propionic acid from the rumen of the beef steer. Journal of Animal Science 68: 33373349.CrossRefGoogle ScholarPubMed
Peters, JP, Shen, RY and Robinson, JA (1992) Disappearance of acetic acid from the bovine reticulorumen at basal and elevated concentrations of acetic acid. Journal of Animal Science 70: 15091517.CrossRefGoogle ScholarPubMed
Pitt, RE, van Kessel, JS, Fox, DG, Pell, AN, Barry, MC and van Soest, PJ (1996) Prediction of ruminal fatty acids and pH within the net carbohydrate and protein system. Journal of Animal Science 74: 226244.CrossRefGoogle ScholarPubMed
Rechkemmer, G, Gäbel, G, Diernaes, L, Sehested, J, Moller, PD and Engelhardt, W von (1995) Transport of short-chain fatty acids in the forestomach and hindgut. In: Engelhardt, W von, Leonhard-Marek, S, Breves, G and Giesecke, D (editors). Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction, Stuttgart: Ferdinand Enke Verlag, pp. 93113.Google Scholar
Rémésy, C, Demigné, C and Morand, C (1995) Metabolism of short-chain fatty acids in the liver. In: Cummings, JH, Rombeau, JL and Sakata, T (editors). Physiological and Clinical Aspects of Short-Chain Fatty Acids. Cambridge: Cambridge University Press, 171190.Google Scholar
Rémond, D, Ortigues, I and Jouany, J-P (1995) Energy substrates for the rumen epithelium. Proceedings of the Nutrition Society 54: 95105.CrossRefGoogle ScholarPubMed
Reynolds, CK, Huntington, GB, Tyrrell, HF and Reynolds, PJ (1988) Net metabolism of volatile fatty acids, D-beta-hydroxybutyrate, nonesterified fatty acids, and blood gases by portal-drained viscera and liver of lactating Holstein cows. Journal of Dairy Science 71: 23952405.CrossRefGoogle Scholar
Robinson, AM and Williamson, DH (1980) Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiological Reviews 60: 143187.CrossRefGoogle ScholarPubMed
Rossi, R, Dorig, S, Del Prete, E and Scharrer, E (2000) Suppression of feed intake after parenteral administration of D-beta-hydroxybutyrate in pygmy goats. Journal of Veterinary Medicine A 47: 916.CrossRefGoogle ScholarPubMed
Russell, JB (1991) Resistance of Streptococcus bovis to acetic acid at low pH—relationship between intracellular pH and anion accumulation. Applied and Environmental Microbiology 57: 255259.CrossRefGoogle ScholarPubMed
Russell, JB and Dombrowski, DB (1980) Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Applied and Environmental Microbiology 39: 604610.CrossRefGoogle ScholarPubMed
Sakata, T (1995) Effects of short-chain fatty acids on the proliferation of gut epithelial cells in vivo. In: Cummings, JH, Rombeau, JL and Sakata, T (editors). Physiological and Clinical Aspects of Short-Chain Fatty Acids. Cambridge: Cambridge University Press, pp. 289305.Google Scholar
Sakata, T and Tamate, H (1978) Rumen epithelial cell proliferation accelerated by rapid increase in intraruminal butyrate. Journal of Dairy Science 61: 11091113.CrossRefGoogle ScholarPubMed
Sakata, T, Hikosaka, K, Shiomura, Y and Tamate, H (1980) Stimulatory effect of insulin on ruminal epithelium cell mitosis in adult sheep. British Journal of Nutrition 44: 325331.CrossRefGoogle ScholarPubMed
Scaife, JR and Tichivangana, JZ (1980) Short chain acyl-CoA synthetases in ovine rumen epithelium. Biochimica et Biophysica Acta 619: 445450.CrossRefGoogle ScholarPubMed
Scharrer, E (1999) Control of food intake by fatty acid oxidation and ketogenesis. Nutrition 15: 704714.CrossRefGoogle ScholarPubMed
Scheppach, W, Bartram, HP and Richter, F (1995) Role of short-chain fatty acids in the prevention of colorectal cancer. European Journal of Cancer 31A: 10771180.CrossRefGoogle ScholarPubMed
Schröder, O, Hess, S, Caspary, WF and Stein, J (1999) Mediation of differentiating effects of butyrate on the intestinal cell line CaCO-2 by transforming growth factor-beta 1. Zeitschrift für Ernährungswissenschaft 38: 4550.Google ScholarPubMed
Schweigel, M, Vormann, J and Martens, H (2000) Mechanisms of Mg(2+) transport in cultured ruminal epithelial cells. American Journal of Physiology, Gastrointestinal and Liver Physiology 278: G400G408.CrossRefGoogle ScholarPubMed
Seal, CJ and Parker, DS (1994) Effect of intraruminal propionic acid infusion on metabolism of mesenteric- and portal-drained viscera in growing steers fed a forage diet: I. Volatile fatty acids, glucose, and lactate. Journal of Animal Science 72: 13251334.CrossRefGoogle ScholarPubMed
Sehested, J, Diernaes, L, Moller, PD and Skadhauge, E (1996) Transport of sodium across the isolated bovine rumen epithelium: interaction with short-chain fatty acids, chloride and bicarbonate. Experimental Physiology 81: 7994.CrossRefGoogle ScholarPubMed
Sehested, J, Basse, A, Andersen, JB, Diernaes, L, Moller, PD, Skadhauge, E and Aaes, O (1997) Feed-induced changes in transport across the rumen epithelium. Comparative Biochemistry and Physiology A 118: 385386.CrossRefGoogle ScholarPubMed
Sehested, J, Diernaes, L, Moller, PD and Skadhauge, E (1999) Ruminal transport and metabolism of short-chain fatty acids (SCFA) in vitro: effect of SCFA chain length and pH. Comparative Biochemistry and Physiology A 123: 359368.CrossRefGoogle ScholarPubMed
Sehested, J, Andersen, JB, Aaes, O, Kristensen, JB, Diernaes, L, Moller, PD and Skadhauge, E (2000) Feed-induced changes in the transport of butyrate, sodium and chloride ions across the isolated bovine rumen epithelium. Acta Agriculturae Scandinavica A 50: 4755.Google Scholar
Siciliano-Jones, J and Murphy, MR (1989) Production of volatile fatty acids in the rumen and cecum–colon of steers as affected by forage:concentrate and forage physical form. Journal of Dairy Science 72: 485492.CrossRefGoogle ScholarPubMed
Stevens, CE and Stettler, BK (1966) Factors affecting the transport of volatile fatty acids across rumen epithelium. American Journal of Physiology 210: 365372.CrossRefGoogle ScholarPubMed
Stevens, CE and Stettler, BK (1966) Transport of fatty acids mixtures across rumen epithelium. American Journal of Physiology—Regulatory and Integrative Physiology 211: R264R271.Google ScholarPubMed
Therion, JJ, Kistner, A and Kornelius, JH (1982) Effect of pH on growth rates of rumen amylolytic and lactilytic bacteria. Applied and Environmental Microbiology 44: 428434.CrossRefGoogle ScholarPubMed
Thorlacius, SO and Lodge, GA (1973) Absorption of steam-volatile fatty acids from the rumen of the cow as influenced by diet, buffers, and pH. Canadian Journal of Animal Science 53: 279288.CrossRefGoogle Scholar
Voet, D and Voet, JG (1992) Lipidstoffwechsel. In: Voet, D and Voet, JG (editors). Biochemie. Weinheim: VCH, pp. 619680.Google Scholar
Walter, A and Gutknecht, J (1986) Permeability of small nonelectrolytes through lipid bilayer membranes. Journal of Membrane Biology 90: 207217.CrossRefGoogle ScholarPubMed
Weekes, TEC (1971) Role of the rumen mucosa in the sheep: relative changes in weight, and in the ability to metabolize propionate during pregnancy and lactation. Research in Veterinary Science 12: 373376.CrossRefGoogle ScholarPubMed
Weekes, TEC (1972) Effects of pregnancy and lactation in sheep on the metabolism of propionate by the ruminal mucosa and on some enzymic activities in the ruminal mucosa. Journal of Agricultural Science, Cambridge 79: 409421.CrossRefGoogle Scholar
Weekes, TEC and Webster, AJF (1975) Metabolism of propionate in the tissues of sheep gut. British Journal of Nutrition 33: 425438.CrossRefGoogle Scholar
Weigand, E, Young, JW and McGilliard, AD (1972) Extent of propionate metabolism during absorption from the bovine ruminoreticulum. Biochemical Journal 126: 201209.CrossRefGoogle ScholarPubMed
Weigand, E, Young, JW and McGilliard, AD (1975) Volatile fatty acid metabolism by rumen mucosa from cattle fed hay or grain. Journal of Dairy Science 58: 12941300.CrossRefGoogle ScholarPubMed
Weiss, B (1994) Untersuchungen über Beziehungen zwischen der Azidität des Panseninhaltes und dem Proliferationszustand der Pansenschleimhaut beim Rind. Berliner und Münchener Tierärztliche Wochenschrift 107: 7378.Google Scholar