Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-13T08:01:55.107Z Has data issue: false hasContentIssue false

Comparative performance of six Holstein-Friesian × Guzera grades in Brazil 1. Gestation length and birth weight

Published online by Cambridge University Press:  02 September 2010

A. M. Lemos
Affiliation:
Centro Nacional de Pesquisa — Gado de Leite, 36 155 Coronel Pacheco-MG, Brazil
R. L. Teodoro
Affiliation:
Centro Nacional de Pesquisa — Gado de Leite, 36 155 Coronel Pacheco-MG, Brazil
R. T. Barbosa
Affiliation:
Centro Nacional de Pesquisa — Gado de Leite, 36 155 Coronel Pacheco-MG, Brazil
A. F. Freitas
Affiliation:
Centro Nacional de Pesquisa — Gado de Leite, 36 155 Coronel Pacheco-MG, Brazil
F. E. Madalena
Affiliation:
Centro Nacional de Pesquisa — Gado de Leite, 36 155 Coronel Pacheco-MG, Brazil
Get access

Abstract

Gestation length and birth weight of 939 calves born at Santa Monica Experimental Station, Valenc, a, State of Rio de Janeiro, were studied. The calves were of six red and white Holstein-Friesian (HF) × Guzera (G) grades: 1/4, 1/2, 5/8, 3/4, 7/8 and ≥ 31/32.

As the grade × sex interaction for birth weight was significant, data for each sex were analysed separately. A model, including the effects of grade, year-season of birth, grade × year season interaction and age of dam as a covariate, resulted in the following least-square means for the six grades in the above order (± s.e.): gestation length for cows carrying male calves, 290·0 (± 0·9), 281·2 (± 0·9), 285·3 (± 0·8), 278·8 (± 0·9), 280·5 (± 0·9) and 279·3 (± 0·9) days; gestation length for female calves, 287·5 (± 0·9), 280·1 (± 1·0), 285·3 (± 0·9), 274·5 (± 1·1), 279·2 (± 0·9) and 276·4 (± 1·0) days; birth weight for males, 34·6 (± 0·7), 28·6 (± 0·8), 34·2 (± 0·7), 32·4 (± 0·7), 35·0 (± 0·7) and 34·7 (± 0·7) kg; birth weight for females, 29·9 (± 0·6), 29·5 (± 0·7), 33·4 (± 0·6), 31·9 (± 0·7), 33·6 (± 0·6) and 32·6 (± 0·6) kg.

Direct (g1) and maternal (gM) breed additive effects (HF - G), and direct (h1) and maternal heterosis (hM) were estimated. The estimates of g7, gM, h1 and hM were respectively, for gestation length for male calves: -21·5 (± 1·9), 10·6 (± 2·1), 1·5 (± 1·8) and -1·6 (± 11) days; for gestation length, for female calves: -21·9 (± 2·1), 14·6 (± 2·5), 5·7 (± 2·1) and -1·5 (± 1·2) days; for birth weight of male calves: -3·5 (± 1·5), 7·1 (± 1·8), -0·6 (± 1·5) and 1·0 (± 0·9) kg; and for birth weight of female calves: 4·7 (± 1·4), 4·1 (± 1·6), 2·8 (± 1·3) and 2·0 (± 0·8) kg. The difference in birth weight between males and females was 4·7 (± 0·9) for G-sired calves and 0·8 (± 0·4) for HF-sired calves.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andersen, H. and Plum, M. 1965. Gestation length and birth weight in cattle and buffaloes: a review. J. Dairy Sci. 48: 12241235.CrossRefGoogle ScholarPubMed
Bailey, C. M. and Moore, J. D. 1980. Reproductive performance and birth characters of divergent breeds and crosses of beef cattle. J. Anim. Sci. 50: 645652.CrossRefGoogle Scholar
Barlow, R. 1981. Experimental evidence for interaction between heterosis and environment in animals. Anim. Breed. Abstr. 49: 715737.Google Scholar
Barlow, R. and O'Neill, G. H. 1978. Performance of Hereford and crossbred Hereford cattle in the subtropics of New South Wales: Growth of first cross calves to weaning. Aust. J. agric. Res. 29: 13131324.CrossRefGoogle Scholar
Branton, C., McDowell, R. E. and Brown, M. A. 1966. Zebu-European crossbreeding as a basis of dairy cattle improvement in the U.S.A. Sth. Coop. Ser. Bull. La agric. Exp. Stn, No. 114.Google Scholar
Carmo, J. Do and Nascimento, C. B. 1961. [Study on the performance of the Holstein-Friesian breed, black and white variety, at the Expt. Breeding farm "Santa Monica", Juparanã, State of Rio de Janeiro.] Publ. Inst. Zootec, Min. Agric, Rio de J., No. 39.Google Scholar
Cartwright, T. C. 1973. Comparison of F, cows with purebreds and other crosses. In Crossbreeding Beef Cattle. Series 2 (ed. Koger, M., Cunha, T. J. and Warnick, A. C.), pp. 4963. University of Florida Press, Gainesville.Google Scholar
Ellis, G. F. Jr, Cartwright, T. C. and Kruse, W. E. 1965. Heterosis for birth weight in Brahman-Hereford crosses. J. Anim. Sci. 24: 9396.CrossRefGoogle Scholar
Gregory, K. E., Smith, G. M., Cundiff, L. V., Koch, R. M. and Laster, D. B. 1979. Characterization of biological types of cattle — Cycle III: I. Birth and weaning traits. J. Anim. Sci. 48: 271279.CrossRefGoogle ScholarPubMed
Harvey, W. R. 1972. User's guide for least squares and maximum likelihood general purpose program. Ohio State University, Columbus (Mimeograph).Google Scholar
Long, C. R. 1980. Crossbreeding for beef production: experimental results. J. Anim. Sci. 51: 11971223.CrossRefGoogle Scholar
Madalena, F. E. 1981. Crossbreeding strategies for dairy cattle in Brazil. Wld Anim. Rev. 38: 2330.Google Scholar
Melucci, L., Miquel, M. C. and Molinuevo, H. A. 1978. [Calving and weaning rates and dystocia of F, dams.] Proc. Semin. Heterosis Beef Cattle Prod. Systems, Balcarce.Google Scholar
Naidu, K. N. and Desai, R. N. 1966. Some factors affecting birth weight in crossbred generations of Holstein-Friesian × Sahiwal cattle. Indian J. vet. Sci. 36: 135139.Google Scholar
Pereira, J. C. C. and Miranda, J. J. F. 1978. [Cattle Reproductive Efficiency.] Escola de Veterinària. Universidade Federal de Minas Gerais, Belo Horizonte (Mimeograph).Google Scholar
Rao, M. K., Nagarcenkar, R. and Sharma, K. N. S. 1975. Evaluation of performance of Brown Swiss × zebu crosses for early traits. Indian J. Anim. Sci. 45: 514520.Google Scholar
Reynolds, W. L., De rouen, T. M., Moin, S. and Koonce, K. L. 1980. Factors influencing gestation length, birth weight and calf survival of Angus, Zebu and Zebu cross beef cattle. J. Anim. Sci. 51: 860867.CrossRefGoogle ScholarPubMed
Robertson, A. 1953. A numerical description of breed structure. J. agric. Sci., Camb. 43: 334336.CrossRefGoogle Scholar
Robison, O. W., McDaniel, B. T. and Rincòn, E. J. 1981. Estimation of direct and maternal additive and heterotic effects from crossbreeding experiments in animals. J. Anim. Sci. 52: 4450.CrossRefGoogle ScholarPubMed
Scheffè, H. 1959. The Analysis of Variance. Wiley, New York.Google Scholar
Seifert, G. W. and Kennedy, J. F. 1966. Some observations on the birth weight of beef cattle. Proc. Aust. Soc. Anim. Prod. 6: 257259.Google Scholar
Sheridan, A. K. 1981. Crossbreeding and heterosis. Anim. Breed. Abstr. 49: 131144.Google Scholar
Taneja, V. K. and Bhat, P. N. 1972. Genetic and non-genetic factors affecting body weights in Sahiwal × Friesian crosses. Anim. Prod. 14: 295298.Google Scholar
Teodoro, R. L. 1978. [Environmental and genetic effects on the birth weight of calves of the Caracu breeds.] M.Sc. Thesis, Escola Vet., Univ. Federal de Minas Gerais, Belo Horizonte.Google Scholar
Tomar, S. S. and Arora, K. L. 1972. The influence of different breeds of exotic sires on the gestation length of Hariana cows. Indian vet. J. 49: 572577.Google Scholar
Trail, J. C. M., Gregory, K. E., Marples, H. J. S. and Kakonge, J. 1982. Heterosis, additive maternal and additive direct effects of the Red Poll and Boran breeds of cattle. J. Anim. Sci. 54: 517523.CrossRefGoogle ScholarPubMed
Turner, J. W. and McDonald, R. P. 1969. Mating-type comparisons among crossbred beef cattle for preweaning traits. J. Anim. Sci. 29: 389397.CrossRefGoogle Scholar
Wijeratne, W. V. S. 1970. Crossbreeding Sinhala cattle with Jersey and Friesian in Ceylon. Anim. Prod. 12: 473483.Google Scholar