Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T18:50:30.843Z Has data issue: false hasContentIssue false

Mapping of multiple quantitative trait loci for growth and carcass traits in a complex commercial sheep pedigree

Published online by Cambridge University Press:  09 March 2007

A. F. McRae*
Affiliation:
Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
S. C. Bishop
Affiliation:
Roslin Institute (Edinburgh), Roslin, Midlothian EH25 9PS, UK
G. A. Walling
Affiliation:
Roslin Institute (Edinburgh), Roslin, Midlothian EH25 9PS, UK
A. D. Wilson
Affiliation:
Roslin Institute (Edinburgh), Roslin, Midlothian EH25 9PS, UK
P. M. Visscher
Affiliation:
Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
*
Get access

Abstract

The confirmation of the segregation of experimentally populations is required before their commercial design of such confirmation experiments has the the pedigree while maintaining the power to detect chromosomes of a complex pedigree of 570 Charollais contained a moderately sized half-sib family which was wide level were detected in the half-sib analysis and analysis of the complex pedigree using identity-by-estimation of QTL effects was achieved by fitting all observed in the single QTL models. Both methods of different regions, and the variance components method demonstrates the viability of applying a variance inbreeding.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

JSR Genetics Ltd, Southburn, Driffield, East Yorkshire YO25 9ED, UK

References

Baret, P. V., Knott, S. A. and Visscher, P. M. 1998. On the use of linear regression and maximum likelihood for QTL mapping in halfsib designs. Genetical Research 72: 149158.CrossRefGoogle ScholarPubMed
Bot, J., Karlsson, L. J. E., Greef, J. and Witt, C. 2004. Association of the MHC with production traits in Merino ewes. Livestock Production Science 86: 8591.Google Scholar
Broad, T. E., Glass, B. C., Greer, G. J., Robertson, T. M., Bain, W. E., Lord, E. A. and McEwan, J. C. 2000. Search for a locus near to myostatin that increases muscling in Texel sheep in New Zealand. Proceedings of the New Zealand Society of Animal Production 60: 110112.Google Scholar
Casas, E., Shackelford, S. D., Keele, J. W., Stone, R. T., Kappes, S. M. and Koohmaraie, M. 2000. Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin. Journal of Animal Science 78: 560569.Google Scholar
Churchill, G. A. and Doerge, R. W. 1994. Emperical threshold values for quantitative trait mapping. Genetics 138: 963971.Google Scholar
Cockett, N. E., Jackson, S. P., Shay, T. L., Nielson, D., Moore, S. S., Steele, M. R., Barendse, W., Green, R. D. and Georges, M. 1994. Chromosomal localization of the callipyge gene in sheep (Ovis aries) using bovine DNA markers. Proceedings of the National Academy of Sciences 91: 30193023.CrossRefGoogle ScholarPubMed
Dodds, K. G., Tate, M. L., McEwan, J. C. and Crawford, A. M. 1996. Exclusion probabilities for pedigree testing farm animals. Theoretical and Applied Genetics 92: 966975.Google Scholar
Elo, K. T., Vilkki, J., de Koning, D. J., Velmala, R. J. and Mäki-Tanila, A. V. 1999. A quantitative trait locus for live weight maps to bovine chromosome 23. Mammalian Genome 10: 831835.Google Scholar
Freking, B. A., Murphy, S. K., Wylie, A. A., Rhodes, S. J., Keele, J. W., Leymaster, K. A., Jirtle, R. L. and Smith, T. P. L. 2002. Identification of a single base change causing the callipyge muscle hypertrophy phenotype, the only known example of polar overdominance in mammals. Genome Research 12: 14961506.CrossRefGoogle ScholarPubMed
George, A. W., Visscher, P. M. and Haley, C. S. 2000. Mapping quantitative trait loci in complex pedigrees: a two-step variance component approach. Genetics 156: 20812092.Google Scholar
Gilmour, A. R., Gogel, B. J., Cullis, B. R., Welham, S. J. and Thompson, R. 2002. ASREML user guide 1·0. VSN International Ltd, Hemel Hempstead.Google Scholar
Göring, H. H. H., Terwilliger, J. D. and Blangero, J. 2001. Large upward bias in estimation of locus-specific effects from genomewide scans. American Journal of Human Genetics 69: 13571369.Google Scholar
Green, P., Falls, K. and Crooks, S. 1990. Cri-Map version 2·4. School of Medicine, Washington University, St Louis, Mo.Google Scholar
Grignola, F. E., Hoeschele, I., Zhang, Q. and Thaller, G. 1996. Mapping quantitative trait loci in outcross populations via residual maximum likelihood. II. A simulation study. Genetics, Selection, Evolution 28: 491504.CrossRefGoogle Scholar
Grisart, B., Coppieters, W., Farnir, F., Karim, L., Ford, C., Berzi, P., Cambisano, N., Mni, M., Reid, S., Simon, P., Spelman, R., Georges, M. and Snell, R. 2002. Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Research 12: 222231.Google Scholar
Grobet, L., Poncelet, D., Royo, L. J., Brouwers, D., Pirottin, D., Michaux, C., Ménissier, F., Zanotti, M., Dunner, S. and Georges, M. 1998. Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mammalian Genome 9: 210213.Google Scholar
Heath, S. C. 1997. Markov Chain Monte Carlo segregation and linkage analysis for oligogenic models. American Journal of Human Genetics 61: 748760.Google Scholar
Jung, Y. C., Rothschild, M. F., Flanagan, M. P., Christian, L. L. and Warner, C. M. 1989. Association of restriction fragment length polymorphisms of swine leucocyte class I genes with production traits of Duroc and Hampshire boars. Animal Genetics 20: 7991.Google Scholar
Kim, K. S., Larsen, N., Short, T., Plastow, G. and Rothschild, M. F. 2000. A missence variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth and feed intake traits. Mammalian Genome 11: 131135.CrossRefGoogle Scholar
Kmiec, M. 1999a. Transferrin polymorphism versus growth fate in lambs, Polish long-wool sheep. I. Frequency of genes and genotypes of transferrin in flocks of Polish long-wool sheep. Archiv für Tierzucht 42: 393402.Google Scholar
Kmiec, M. 1999b. Transferrin polymorphism versus growth rate in lambs, Polish long-wool sheep. II. Analysis of relation between transferrin polymorphism of lamb blood serum versus growth rate up to age of 5 months. Archiv für Tierzucht 42: 469479.Google Scholar
Knott, S. A., Elsen, J. M. and Haley, C. S. 1996. Methods for multiple-marker mapping of quantitative trait loci in half-sib populations. Theoretical and Applied Genetics 93: 7180.Google Scholar
Koning, D. J. de, , Pong-Wong, R., Varona, L., Evans, G. J., Giuffra, E., Sanchez, A., Plastow, G., Noguera, J. L., Andersson, L. and Haley, C. S. 2003. Full pedigree quantitative trait locus analysis in commercial pigs using variance components. Journal of Animal Science 81: 21552163.CrossRefGoogle ScholarPubMed
Lynch, M. and Walsh, B. 1998. Genetics and analysis of quantitative traits. Sinauer Associates, Inc., Sunderland.Google Scholar
Machado, M. B. B., Alencar, M. M., Pereira, A. P., Oliveira, H. N., Casas, E., Coutinho, L. L. and Regitano, L. C. A. 2003. QTL affecting body weight in a candidate region of cattle chromosome 5. Genetics and Molecular Biology 26: 259265.Google Scholar
Maddox, J. 2003. Australian sheep gene mapping web site. Current sex averaged, female, male distances for best position maps (v4. 2). http: //rubens. its. unimelb. edu. au/~jillm/jill. htm. Updated 11 June 2003.Google Scholar
Maddox, J. F., Davies, K. P., Crawford, A. M., Hulme, D. J., Vaiman, D., Cribiu, E. P., Freking, B. A., Beh, K. J., Cockett, N. E., Kang, N., Riffkin, C. D., Drinkwater, R., Moore, S. S., Dodds, K. G., Lumsden, J. M., Stijn van, T. C., Phua, S. H., Adelson, D. L., Burkin, H. R., Broom, J. E., Buitkamp, J., Cambridge, L., Cushwa, W. T., Gerard, E., Galloway, S. M., Harrison, B., Hawken, R. J., Hiendleder, S., Henry, H. M., Medrano, J. F., Paterson, K. A., Schibler, L., Stone, R. T. and Hest van, B. 2001. An enhanced linkage map of the sheep genome comprising more than 1000 loci. Genome Research 11: 12751289.Google Scholar
Mangin, B., Goffinet, B. and Rebai, A. 1994. Constructing confidence intervals for QTL location. Genetics 138: 13011308.Google Scholar
Marcq, F., Elsen, J. -M., El Barkouki, S., Bouix, J., Eychenne, F., Grobet, L., Karim, L., Laville, E., Nezer, C., Royo, L., Sayd, T., Bibe, B., Le Roy, P. L. and Georges, M. 1998. Investigating the role of myostatin in the determinism of double muscling characterizing Belgian Texel sheep. Animal Genetics 29: (suppl. 1) 5253.Google Scholar
Moody, D. E., Pomp, D., Newman, S. and MacNeil, M. D. 1996. Characterization of DNA polymorphisms in three populations of Hereford cattle and their associations with growth and maternal EPD in Line 1 Herefords. Journal of Animal Science 74: 17841793.CrossRefGoogle ScholarPubMed
Nagamine, Y., Haley, C. S., Sewalem, A. and Visscher, P. M. 2003. Quantitative trait loci variation for growth and obesity between and within lines of pigs (Sus scrofa). Genetics 164: 629635.Google Scholar
Nicoll, G. B., Burkin, H. R., Broad, T. E., Jopson, N. B., Greer, G. J., Bain, W. E., Wright, C. S., Dodds, K. G., Fennessy, P. F. and McEwan, J. C. 1998. Genetic linkage of microsatellite markers to the Carwell locus for rib-eye muscling in sheep. Proceedings of the sixth world congress on genetics applied to livestock production, Armidale, vol. 26, pp. 529532.Google Scholar
O'Connell, J. R. and Weeks, D. 1998. PedCheck: a program for identification of genotype incompatibilities in linkage analysis. American Journal of Human Genetics 63: 259266.Google Scholar
Paterson, S., Wilson, K. and Pemberton, J. M. 1998. Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulae population (Ovis aries L.). Proceedings of the National Academy of Sciences 95: 37143719.Google Scholar
Seaton, G., Haley, C. S., Knott, S. A., Kearsey, M. and Visscher, P. M. 2002. QTL Express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics 18: 339340.Google Scholar
Slate, J., Pemberton, J. M. and Visscher, P. M. 1999. Power to detect QTL in a free-living polygynous population. Heredity 83: 327336.Google Scholar
Slate, J., Visscher, P. M., MacGregor, S., Stevens, D., Tate, M. L. and Pemberton, J. M. 2002. A genome scan for quantitative trait loci in a wild population of red deer (Cervus elaphus). Genetics 162: 18631873.Google Scholar
Stone, R. T., Keele, J. W., Shackelford, S. D., Kappes, S. M. and Koohmaraie, M. 1999. A primary screen of the bovine genome for quantitative trait loci affecting carcass and growth traits. Journal of Animal Science 77: 13791384.CrossRefGoogle ScholarPubMed
Van Ooijen, J. W. 1992. Accuracy of mapping quantitative trait loci in autogamous species. Theoretical and Applied Genetics 84: 803811.Google Scholar
Visscher, P. M., Haley, C. S., Heath, S. C., Muir, W. J. and Blackwood, D. H. R. 1999. Detecting QTLs for uni- and bipolar disorder using a variance component method. Psychiatric Genetics 9: 7584.Google Scholar
Visscher, P. M., Thompson, R. and Haley, C. S. 1996. Confidence intervals in QTL mapping by bootstrapping. Genetics 143: 10131020.Google Scholar
Walling, G. A., Visscher, P. M., Simm, G. and Bishop, S. C. 2001. Confirmed linkage for QTLs affecting muscling in Texel sheep on chromosome 2 and 18. Proceedings of the 52nd annual meeting of the European Association for Animal Production,Budapest p. 59 (abstr. ).Google Scholar
Walling, G. A., Visscher, P. M., Wilson, A. D., McTeir, B. L., Simm, G. and Bishop, S. C. 2004. Mapping of quantitative trait loci for growth and carcass traits in commercial sheep populations. Journal of Animal Science 82: 22342245.CrossRefGoogle ScholarPubMed
Weller, J. I., Kashi, Y. and Soller, M. 1990. Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative trait loci in dairy cattle. Journal of Dairy Science 73: 25252537.Google Scholar
Williams, J. T., Duggirala, R. and Blangero, J. 1997. Statistical properties of a variance components method for quantitative trait linkage analysis in nuclear families and extended pedigrees. Genetic Epidemiology 14: 10651070.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Wilson, T., Wu, X. Y., Juengel, J. L., Ross, I. K., Lumsden, J. M., Lord, E. A., Dodds, K. G., Walling, G. A., McEwan, J. C., O'Connell, A. R., McNatty, K. P. and Montgomery, G. W. 2001. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biology of Reproduction 64: 12251235.Google Scholar
Xu, S. and Atchley, W. R. 1995. A random model approach to interval mapping of quantitative trait loci. Genetics 141: 11891197.Google Scholar