Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-10T14:26:43.299Z Has data issue: false hasContentIssue false

Caecotrophes intake in growing rabbits estimated either from urinary excretion of purine derivatives or from direct measurement using animals provided with a neck collar: effect of type and level of dietary carbohydrate

Published online by Cambridge University Press:  18 August 2016

A. Belenguer
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Miguel Servet 177, Zaragoza 50013, Spain
J. Balcells*
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Miguel Servet 177, Zaragoza 50013, Spain
M. Fondevila
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Miguel Servet 177, Zaragoza 50013, Spain
C. Torre
Affiliation:
Agribands, Purina España, S. A. Sant Joan 193, Barcelona, Spain
*
To whom correspondence should be addressed; E-mail:balcells@posta.unizar.es
Get access

Abstract

The present study compares estimates of caecotrophes production from urinary purine derivatives (PD) excretion with that from preventing caecotrophy by using a neck collar. A total of 64 New Zealand growing male rabbits were used to study the effect of diet composition on caecotrophes production. Diets were formulated using two sources of structural carbohydrates (fibre): alfalfa hay (AH) and sugar-beet pulp (SBP), mixed at two constant proportions, (0·75: 0·25) AH diets and (0·25: 0·75) SBP diets. Both diets included either barley or maize grain at two fibre: grain ratios (F/G, 80: 20 and 45: 55). Diets were given ad libitum. Growth rate, dry matter intake and digestibility were not modified by the grain source, although high F/G diets resulted in a lower growth rate (19·8 v. 26·4 g/day; P < 0·001). Between fibre sources, dry-matter intake and growth were higher in AH than in SBP diets (122·5 and 25·6 v. 101·6 and 20·4 g/day, respectively, P < 0·001 and P < 0·01). Rabbits given high F/G ratio and AH diets excreted more caecotrophes than those given low F/G ratio and SBP diets (19·5 and 20·9 v. 16·3 and 14·85 g/day, respectively). Microbial-N recycling through the caecotrophy process was higher when considering data from PD excretion (1·33 g/d) than when estimated by preventing caecotrophy (0·72 g/day).

Type
Non-ruminant nutrition, behaviour and production
Copyright
Copyright © British Society of Animal Science 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balcells, J., Ganuza, J. M., Pérez, J.F., Martín-Orúe, S. M. and Gonzalez Ronquillo, M. 1998. Urinary excretion of purine derivatives as an index of microbial-nitrogen intake in growing rabbits. British Journal of Nutrition 79: 373380.CrossRefGoogle ScholarPubMed
Balcells, J., Guada, J. A., Castrillo, C. and Gasa, J. 1991. Urinary excretion of allantoin and allantoin precursors by sheep after different rates of purine infusion into the duodenum. Journal of Agricultural Science, Cambridge 116: 309317.CrossRefGoogle Scholar
Balcells, J., Guada, J. A., Peiró, J. M. and Parker, D. S. 1992. Simultaneous determination of allantoin and oxypurines in biological fluids by high-performance liquid chromatography. Journal of Chromatography 575: 153157.CrossRefGoogle ScholarPubMed
Bellier, R. and Gidenne, T. 1996. Consequences of reduced fibre intake on digestion, rate of passage and caecal microbial activity in the young rabbit. British Journal of Nutrition 75: 353363.CrossRefGoogle ScholarPubMed
Blas, J. C.de, Santomá, G., Carabaño, R. and Fraga, M. J. 1986. Fiber and starch levels in fattening rabbit diets. Journal of Animal Science 63: 18971904.Google Scholar
Boulahrouf, A., Fonty, G. and Gouet, P. 1991. Establishment, counts and identification of the fibrolytic microflora in the digestive tract of the rabbit. Influence of feed cellulose content. Current Microbiology 22: 2125.CrossRefGoogle Scholar
Bryant, M. P. and Burkey, L. A. C. 1953. Cultural methods and some characteristics of some of the more numerous groups of bacteria in the bovine rumen. Journal of Dairy Science 36: 205217.CrossRefGoogle Scholar
Candau, M., Delpon, G. and Fioramonti, J. 1979. Influences of the nature of cell wall carbohydrates on the anatomic-functional developement of the digestive tract in the rabbit. Annales de Zootechnie 28: 127.CrossRefGoogle Scholar
Candau, M., Fioramonti, J. and Touitin, M. 1980. Sites de degradation de l’urée dans le tube digestif du lapin. Second World Rabbit Congress, Barcelona, pp. 8189.Google Scholar
Carabaño, R., Motta-Ferreira, W., Blas, J. C.de and Fraga, M. J. 1997. Substitution of sugarbeet pulp for alfalfa hay in diets for growing rabbits. Animal Feed Science and Technology 65: 249256.CrossRefGoogle Scholar
Carabaño, R. and Piquer, J. 1998. The digestive system of the rabbit. In The nutrition of the rabbit (ed. C., de Blas and Wiseman, J.), pp. 116. CAB International, Wallingford.Google Scholar
Champe, K. A. and Maurice, D. V. 1983. Response of early weaned rabbits to source and level of dietary fiber. Journal of Animal Science 56: 11051114.CrossRefGoogle ScholarPubMed
Chaney, A. L. and Marbach, E. P. 1962. Modified reagents for determination of urea and ammonia. Clinical Chemistry 8: 131142.CrossRefGoogle ScholarPubMed
Chen, X. B., Hovell, F. D.DeB., Ørskov, F.R. and Brown, D. S. 1990. Excretion of purine derivatives by ruminants: effect of exogenous supply on purine derivative excretion by sheep. British Journal of Nutrition 63: 131142.CrossRefGoogle ScholarPubMed
Cherbut, C., Barry, J. L., Wyers, M. and Delort-Laval, J. 1988. Effect of the nature of dietary fibre on transit time and faecal excretion in the growing pig. Animal Feed Science and Technology 20: 327333.CrossRefGoogle Scholar
Dehority, B. A. 1984. Evaluation of subsampling and fixation procedures used for counting rumen protozoa. Applied and Environmental Microbiology 48: 182185.CrossRefGoogle ScholarPubMed
Dehority, B. A. 1986. Protozoa of the digestive tract of herbivorous mammals. Insect Science and its Application 7: 279296.Google Scholar
Dehority, B. A., Trasbasso, P. A. and Grifo, A. P. 1989. Most-probable number procedures for enumerating ruminal bacteria, including the simultaneous estimation of total and cellulolytic numbers in one medium. Applied and Environmental Microbiology 55: 27892792.CrossRefGoogle ScholarPubMed
Fraga, M. J. 1998. Protein digestion. In The nutrition of the rabbit (ed. de Blas, C. and Wiseman, J.), pp. 3954. CAB International, Wallingford.Google Scholar
Ganuza, J.M., Balcells, J., J.F., Pérez, Fondevila, M. and Parker, D. S. 1999. Nutritive value of caecum microorganisms and caecotrophes in rabbits. Proceedings of the British Society of Animal Science, p. 223 CrossRefGoogle Scholar
García, G., Gálvez, J. F. and Blas, J. C.de. 1993. Effect of substitution of sugarbeet pulp for barley en diets for finishing rabbits on growth performance and on energy and nitrogen efficiency. Journal of Animal Science 71: 18231830.CrossRefGoogle Scholar
García, J., Blas, J. C.de, Carabaño, R. and García, P. 1995. Effect of type of lucerne hay on caecal fermentation and nitrogen contribution through caecotrophy in rabbits. Reproduction, Nutrition, Development 35: 267275.CrossRefGoogle ScholarPubMed
Gidenne, T. 1987. Effet de l’adition d’un concentré riche en fibres dans une ration à base de foin, distribuée à deux niveaux alimentaires chez la lapin adulte. 2. Mesures de digestibilité. Reproduction, Nutrition, Development 27: 801810.CrossRefGoogle Scholar
Gidenne, T. 1992. Effect of fibre level, particle size and adaptation period on digestibility and rate of passage as measured at the ileum and in the faeces in the adult rabbit. British Journal of Nutrition 67: 133146.CrossRefGoogle ScholarPubMed
Gidenne, T., Blas, E., Carabaño, R. and Merino, J. 1994. Effect of ileal cannulation on rabbit digestion and caecotrophy: an inter-laboratory study. World Rabbit Science 2: 101106.Google Scholar
Gidenne, T., Carabaño, R., García, J. and Blas, C.de. 1998. Fibre digestion. In The nutrition of the rabbit (ed. de Blas, C. and Wiseman, J.), pp. 6988. CAB International, Wallingford.Google Scholar
Gidenne, T., B., Carré, Segura, M., Lapanouse, A. and Gomez, J. 1991. Fibre digestion and rate of passage in the rabbit: effect of particle size and level of lucerne meal. Animal Feed Science and Technology 32: 215221.CrossRefGoogle Scholar
Gidenne, T. and Jehl, N. 1996. Replacement of starch by digestible fibre in the feed for the growing rabbit. 1. Consequences for digestibility and rate of passage. Animal Feed Science and Technology 61: 183192.CrossRefGoogle Scholar
Gidenne, T. and Perez, J. M. 1993. Effect of dietary starch origin on digestion in the rabbit. 2. Starch hydrolysis in the small intestine, cell wall degradation and rate of passage measurements. Animal Feed Science and Technology 42: 249257.CrossRefGoogle Scholar
Hoover, W. H. and Heitmann, R. N. 1972. Effects of dietary fiber levels on weight gain, cecal volume and volatile fatty acid production in rabbits. Journal of Nutrition 102: 375380.CrossRefGoogle ScholarPubMed
Hörnicke, H. and Björnhag, G. 1980. Coprophagy and related strategies for digesta utilization. In Digestive physiology and metabolism in ruminants (ed Y., Ruckebusch and Thivend, P.), pp. 707730. MTP Press Ltd, Lancaster.CrossRefGoogle Scholar
Jehl, N. and Gidenne, T. 1996. Replacement of starch by digestible fibre in the feed for the growing rabbit. 2. Consequences for microbial activity in the caecum and on incidence of digestive disorders. Animal Feed Science and Technology 61: 193204.CrossRefGoogle Scholar
Jouany, J. P. 1982. Volatile fatty acid and alcohol determination in digestive contents, silage juices, bacterial cultures and anaerobic fermentor contents. Sciences des Aliments 2: 131144.Google Scholar
Lelkes, L. and Chang, C. L. 1987. Microbial dysbios in rabbit mucoid enteropathy. Laboratory Animal Science 37: 757764.Google Scholar
Martín-Orúe, S. M., Balcells, J., Guada, J. A. and Castrillo, C. 1995. Endogenous purine and pyrimidine derivative excretion in pregnant sows. British Journal of Nutrition 73: 374385.Google ScholarPubMed
Martín-Orúe, S. M., Balcells, J., Zakraoui, F. and Castrillo, C. 1998. Quantification and chemical composition of mixed bacteria harvested from solid fractions of rumen digesta. Effect of detachment procedure. Animal Feed Science and Technology 71: 269282.CrossRefGoogle Scholar
Morisse, J. P., Boilletot, E. and Maurice, R. 1985. Changes induced by feeding in intestinal enviroment of rabbits (VFA, NH3, pH, flora). Recueil de Médecine Vétérinaire 161: 443.Google Scholar
Partridge, G. G., Garthwaite, P. H. and Findlay, M. 1989. Protein and energy retention by growing rabbits offered diets with increasing proportions of fibre. Journal of Agricultural Science, Cambridge 112: 171178.CrossRefGoogle Scholar
Perez, J. F., Balcells, J., Guada, J. A. and Castrillo, C. 1996. Determination of rumen microbial-nitrogen production in sheep: a comparison of urinary purine excretion with methods using 15N and purine bases as markers of microbial-nitrogen entering the duodenum. British Journal of Nutrition 75: 699709.Google ScholarPubMed
Spreadbury, D. 1978. A study of the protein and aminoacid requirements of the growing New Zealand White rabbit, with emphasis on lysine and the sulphur containing amino acids. British Journal of Nutrition 39: 601613.CrossRefGoogle ScholarPubMed
Van Soest, P. J., Robertson, J. B. and Lewis, R. A. 1991. Methods for dietary fiber, neutral detergent fiber and non starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 35833597.CrossRefGoogle ScholarPubMed