Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-18T06:00:30.578Z Has data issue: false hasContentIssue false

Direct genetic and maternal effects affecting litter size, birth weight and pre-weaning losses in Creole goats of Guadeloupe

Published online by Cambridge University Press:  18 August 2016

A. Menéndez-Buxadera
Affiliation:
Institut National de la Recherche Agronomique, Centre de Recherches Agronomiques des Antilles et de la Guyane, Unité de Recherches Zootechniques, Domaine Duclos 97170 Petit Bourg, Guadeloupe
G. Alexandre*
Affiliation:
Institut National de la Recherche Agronomique, Centre de Recherches Agronomiques des Antilles et de la Guyane, Unité de Recherches Zootechniques, Domaine Duclos 97170 Petit Bourg, Guadeloupe
N. Mandonnet
Affiliation:
Institut National de la Recherche Agronomique, Centre de Recherches Agronomiques des Antilles et de la Guyane, Unité de Recherches Zootechniques, Domaine Duclos 97170 Petit Bourg, Guadeloupe
M. Navès
Affiliation:
Institut National de la Recherche Agronomique, Centre de Recherches Agronomiques des Antilles et de la Guyane, Unité de Recherches Zootechniques, Domaine Duclos 97170 Petit Bourg, Guadeloupe
G. Aumont
Affiliation:
Institut National de la Recherche Agronomique, Centre de Recherches Agronomiques des Antilles et de la Guyane, Unité de Recherches Zootechniques, Domaine Duclos 97170 Petit Bourg, Guadeloupe
Get access

Abstract

The litter size (LS), or its equivalent the number of kids born in the litter (NB), of Creole goats in Guadeloupe was studied by two procedures. The first approach considered LS as a single trait and as a characteristic of the mother of the litter, and was studied by an univariate animal model (UAM). The second procedure treated NB, the individual birth weight (BW) and loss of kids (LK) as traits belonging to the animals born in the litter and their dam, in a multitrait animal model (MAM). The heritability for genetic direct effect (h2a) for LS estimated by UAM (0·14) was 40% lower than the corresponding value for NB estimated by MAM. The most appropriate of the 6 MAMs tested estimated heritabilities (h2a) of 0·24, 0·22 and 0·17 for NB, BW and LK, respectively, while maternal effects (h2m) were 0·20, 0·24 and 0·09 for the same characters. The genetic correlations between direct and maternal effects (ram) were negative –0·611 and –0·725 for NB and LK, respectively, and not significantly different from zero for BW. This study explored the possibility of using the information on NB, BW and LK recorded in each animal born in the litter in order to analyse the genetic variability of these traits.

Type
Breeding and genetics
Copyright
Copyright © British Society of Animal Science 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandre, G., Aumont, G., Mainaud, J. C., Fleury, J. and Naves, M. 1999. Reproductive performances of Guadeloupean Creole goats during the suckling period. Small Ruminant Research 34: 155160.CrossRefGoogle Scholar
Arendonk, J. A. M. van, Rosmeuth, C. van, Janss, L. L. G. and Knol, E. F. 1996. Estimation of direct and maternal genetic (co)variance for survival within litter of piglets. Journal of Animal Science 45: 165171.Google Scholar
Bigham, M. L., Morris, C. A., Southey, B. R. and Baker, R. L. 1993. Heritabilities and genetics correlations for live weight and fibre traits in NZ cashmere goats. Livestock Production Science 33: 91104.Google Scholar
Blasco, A., Bidanel, J. P., Bolet, G., Haley, C. S. and Santacreu, M. A. 1993. The genetics of prenatal survival of pigs and rabbits: a review. Livestock Production Science 37: 121.Google Scholar
Bodin, L. 1993. Indirect selection criterium of female reproduction traits. Proceedings of the 44th annual meeting of the European Association for Animal Production, Aarhus, 16-19 August, p. 21.Google Scholar
Bolet, G. 1986. Timing and extent of embryonic mortality in pigs, sheep and goats: genetic variability. In Embrionic mortality in farm animals (ed. Sreenan, J. M. and Diskin, M. G.), pp. 1243. Martinus Nijhoff Publisher, The Netherlands.CrossRefGoogle Scholar
Dong, M. C., Van Vleck, L. D. and Wiggans, G. R. 1988. Effect of relationships on estimation of variance components with an animal model and Restricted Maximum Likelihood. Journal of Dairy Science 71: 30473052.Google Scholar
Falconer, D. S. 1965. Maternal effects and genetic response. Proceedings of the 11th international congress on genetics, vol. 3, pp. 763773.Google Scholar
Fogarty, N. M. 1995. Genetic parameters for live weight, fat and muscle measurements, wool production and reproduction in sheep: a review. Animal Breeding Abstracts 63: 101143.Google Scholar
Gama, L. T., Dickerson, G. E., Young, L. D. and Leimaster, K. A. 1991. Genetic and phenotypic variation sources of preweaning lamb mortality. Journal of Animal Science 69: 27442753.Google Scholar
Gilmour, A. R., Cullis, B. R., Welham, S. J. and Thompson, R. 1998. ASREML version beta user manual. NSW Agriculture, Australia.Google Scholar
Maria, G. T. 1995. Estimates of variance due to direct and maternal effects for reproduction traits in Romanov sheep. Small Ruminant Research 18: 6973.CrossRefGoogle Scholar
Matos, C. A. P., Thomas, D. L., Gianola, D., Tenpelman, R. J. and Young, L. D. 1997. Genetic analysis of discrete reproductive traits in sheep linear and nonlinear models. 1. Estimation of genetic parameters. Journal of Animal Science 75: 7687.CrossRefGoogle ScholarPubMed
Menéndez-Buxadera, A., Alexandre, G. and Mandonnet, N. 2003. The number of animals born per litter: a discussion about its importance, definition and genetic components for small ruminants. Small Ruminant Research In press.Google Scholar
Niekerk, M. M., Schoeman, S. J., Marie, E., Botha, E. and Casey, N. 1996. Heritability estimates for preweaning traits in the Adelaide Boer goats flock. South African Journal of Animal Science 26: 610.Google Scholar
Odubote, I. K. 1996. Genetic parameters for litter size at birth and kidding interval in West African Dwarf goats. Small Ruminant Research 20: 261265.Google Scholar
Olessen, I., Perez Enciso, M., Gianola, D. and Thomas, D. L. 1994. A comparison of normal and non-normal mixed models for number of lambs born in Norwegian sheep. Journal of Animal Science 72: 11661173.Google Scholar
Pariacote, F. A. 1995. El cruzamiento como método de mejoramiento en sistemas tipicos de producción caprina. Trabajo para optar al titulo de Prof. Titular, Universidad Nacional de Miranda, Venezuela.Google Scholar
Perez Enciso, M. and Bidanel, J. P. 1997. Selection for litter size components: a critical review. Génétique, Sélection, Évolution 29: 483496.Google Scholar
Ricordeau, G. 1981. Breeding plans. In Goat production (ed. Gall, C.), pp. 137169. Academic Press, New York.Google Scholar
Roeche, R. and Kennedy, B. W. 1995. Estimation of genetic parameters for litter size in Canadian Yorkshire and Landrace swine with each parity of farrowing treated as a different trait. Journal of Animal Science 71: 29512970.Google Scholar
Willham, R. L. 1972. The role of maternal effects in animal breeding. III. Biometrical aspects of maternal effects in animal. Journal of Animal Science 35: 12881293.Google Scholar
Yazdi, M. H., Johansson, K., Gates, P., Nasholm, A., Jorjani, H. and Liljedahl, L. E. 1999. Bayesian analysis of birth weight and litter size in Baluchi sheep using Gibb’s sampling. Journal of Animal Science 77: 533540.Google Scholar