Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-16T12:41:58.151Z Has data issue: false hasContentIssue false

Selection for components of efficient lean growth rate in pigs 2. Selection pressure applied and direct responses in a Landrace herd

Published online by Cambridge University Press:  02 September 2010

N. D. Cameron
Affiliation:
Roslin Institute (Edinburgh), Roslin, Midlothian EH25 9PS
M. K. Curran
Affiliation:
Wye College, University of London, Wye, Kent TN25 5AH
Get access

Abstract

Responses to divergent selection for lean growth rate with ad-libitum feeding (LGA), for lean food conversion (LFC) and for daily food intake (DFI) in Landrace pigs were studied. Selection was practised for four generations with a generation interval ofl year. A total of 2642 pigs were performance tested in the high, low and control lines, with an average of 37 boars and 39 gilts performance tested per selection line in each generation. The average within-line inbreeding coefficient at generation four was equal to 0·04. There was one control line for the DFI and LFC selection groups and another control line for the LGA selection group. Animals were performance tested in individual pens with mean starting and finishing weights of 30 kg and 85 kg respectively with ad-libitum feeding. The selection criteria had phenotypic s.d. of 32, 29 and 274 units, for LGA, LFC and DFI, respectively, and results are presented in phenotypic s.d.

Cumulative selection differentials (CSD) were 5·1, 4·5 and 5·5 phenotypic s.d. for LGA, LFC and DFI, respectively. Direct responses to selection were 1·4,1·1 and 0·9 (s.e. 0·20) for LGA, LFC and DFI. In each of the three selection groups, the CSD and direct responses to selection were symmetric about the control lines. The correlated response in LFC (1·1, s.e. 0·19) with selection on LGA was equal to the direct response in LFC. In contrast, the direct response in LGA was greater than the correlated response (0·7, s.e. 0·18) with selection on LFC. There was a negative correlated response in DFI (-0·6, s.e. 0·18) with selection on LFC, but the response with selection on LGA was not significant (0·2, s.e. 0·16).

Heritabilities for LGA, LFC and DFI ivere 0·25, 0·25 and 0·18 (s.e. 0·03), when estimated by residual maximum likelihood, with common environmental effects of 0·12 (s.e. 0·02). Genetic correlations for LFC with LGA and DFI were respectively positive (0·87, s.e. 0·02) and negative (-0·36, s.e. 0·09), while the genetic correlation between DFI and LGA was not statistically different from zero, 0·13 (s.e. 0·10). Selection on components of efficient lean growth has identified LGA as an effective selection objective for improving both LGA and LFC, without a reduction in DFI.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cameron, N. D. 1990. Comparison of Duroc and British Landrace pigs and the estimation of genetic and phenotypic parameters for growth and carcass traits. Animal Production 50:141153.Google Scholar
Cameron, N. D. 1994. Selection for components ot efficient lean growth rate in pigs. I. Selection pressure applied and direct responses in a Large White herd. Animal Production 59:251262.Google Scholar
Gu, Y., Haley, C. S. and Thompson, R. 1989. Estimates of genetic and phenotypic parameters of growth and carcass traits from closed lines of pigs on restricted feeding. Animal Production 49: 467475.Google Scholar
Johansson, K. and Kennedy, B. W. 1983. Genetic and phenotypic relationships of performance test measurements with fertility in Swedish Landrace and Yorkshire sows. Ada Agriculturae Scandinnvica 33: 195199.CrossRefGoogle Scholar
McPhee, C. P., Rathmell, G. A., Daniels, L. J. and Cameron, N. D. 1988. Selection in pigs for increased lean growth rate on a time-based feeding scale. Animal Production 47: 149156.Google Scholar
Morris, C. A. 1975. Genetic relationships of reproductive with growth and carcase traits in British pigs. Animal Production 20:3144.Google Scholar
Smith, C., King, J. W. B. and Gilbert, N. 1962. Genetic parameters of British Large White bacon pigs. Animal Production 4: 128143.Google Scholar
Southwood, O. I., Simpson, S. P., Curran, M. K. and Webb, A. J. 1988. Frequency of the halothane gene in British Landrace and Large White pigs. Animal Production 46:97102.Google Scholar
Thompson, R. and Juga, J. 1989. Cumulative selection differentials and realized heritabilities. Animal Production 49: 203208.Google Scholar
Vangen, O. 1979. Studies on a two trait selection experiment in pigs. 2. Genetic changes and realised genetic parameters in the traits under selection. Ada Agriculturae Scandinavica 29: 305319.CrossRefGoogle Scholar
Webb, A. J. and Curran, M. K. 1986. Selection regime by production system interaction in pig improvement: a review of possible causes and solutions. Livestock Production Science 14: 4154.CrossRefGoogle Scholar