Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-01T12:17:15.829Z Has data issue: false hasContentIssue false

Does Cu supplementation affect the mechanical and structural properties and mineral content of red deer antler bone tissue?

Published online by Cambridge University Press:  10 January 2017

P. Gambín
Affiliation:
Animal Science Techniques Applied to Wildlife Management Research Group, Instituto de Investigación en Recursos Cinegéticos, Albacete Section of CSIC-UCLM-JCCM, Universidad de Castilla-La Mancha, Campus Universitario sn, 02071, Albacete, Spain Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional of Universidad de Castilla-La Mancha, Campus Universitario sn, 02071, Albacete, Spain Departamento de Ciencia y Tecnología Agroforestal y Genética, Escuela Técnica Superior de Ingenieros Agrónomos y Montes of Universidad de Castilla-La Mancha, Campus Universitario sn, 02071, Albacete, Spain
M. P. Serrano*
Affiliation:
Animal Science Techniques Applied to Wildlife Management Research Group, Instituto de Investigación en Recursos Cinegéticos, Albacete Section of CSIC-UCLM-JCCM, Universidad de Castilla-La Mancha, Campus Universitario sn, 02071, Albacete, Spain Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional of Universidad de Castilla-La Mancha, Campus Universitario sn, 02071, Albacete, Spain Departamento de Ciencia y Tecnología Agroforestal y Genética, Escuela Técnica Superior de Ingenieros Agrónomos y Montes of Universidad de Castilla-La Mancha, Campus Universitario sn, 02071, Albacete, Spain
L. Gallego
Affiliation:
Animal Science Techniques Applied to Wildlife Management Research Group, Instituto de Investigación en Recursos Cinegéticos, Albacete Section of CSIC-UCLM-JCCM, Universidad de Castilla-La Mancha, Campus Universitario sn, 02071, Albacete, Spain Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional of Universidad de Castilla-La Mancha, Campus Universitario sn, 02071, Albacete, Spain Departamento de Ciencia y Tecnología Agroforestal y Genética, Escuela Técnica Superior de Ingenieros Agrónomos y Montes of Universidad de Castilla-La Mancha, Campus Universitario sn, 02071, Albacete, Spain
A. García
Affiliation:
Animal Science Techniques Applied to Wildlife Management Research Group, Instituto de Investigación en Recursos Cinegéticos, Albacete Section of CSIC-UCLM-JCCM, Universidad de Castilla-La Mancha, Campus Universitario sn, 02071, Albacete, Spain Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional of Universidad de Castilla-La Mancha, Campus Universitario sn, 02071, Albacete, Spain Departamento de Ciencia y Tecnología Agroforestal y Genética, Escuela Técnica Superior de Ingenieros Agrónomos y Montes of Universidad de Castilla-La Mancha, Campus Universitario sn, 02071, Albacete, Spain
J. Cappelli
Affiliation:
Animal Science Techniques Applied to Wildlife Management Research Group, Instituto de Investigación en Recursos Cinegéticos, Albacete Section of CSIC-UCLM-JCCM, Universidad de Castilla-La Mancha, Campus Universitario sn, 02071, Albacete, Spain Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional of Universidad de Castilla-La Mancha, Campus Universitario sn, 02071, Albacete, Spain Departamento de Ciencia y Tecnología Agroforestal y Genética, Escuela Técnica Superior de Ingenieros Agrónomos y Montes of Universidad de Castilla-La Mancha, Campus Universitario sn, 02071, Albacete, Spain
F. Ceacero
Affiliation:
Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 961/129, 165 21, Prague 6-Suchdol, Czech Republic
T. Landete-Castillejos
Affiliation:
Animal Science Techniques Applied to Wildlife Management Research Group, Instituto de Investigación en Recursos Cinegéticos, Albacete Section of CSIC-UCLM-JCCM, Universidad de Castilla-La Mancha, Campus Universitario sn, 02071, Albacete, Spain Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional of Universidad de Castilla-La Mancha, Campus Universitario sn, 02071, Albacete, Spain Departamento de Ciencia y Tecnología Agroforestal y Genética, Escuela Técnica Superior de Ingenieros Agrónomos y Montes of Universidad de Castilla-La Mancha, Campus Universitario sn, 02071, Albacete, Spain
*
E-mail: Martina.Perez@uclm.es
Get access

Abstract

The main factors affecting the mechanical (and other) properties of bone, including antler, are the proportions of ash (especially Ca and P) and collagen content. However, some trace minerals may also play more important roles than would be expected, given their low levels in bone and antler. One such trace mineral is Cu. Here, we studied the effects of Cu supplementation on the mechanical and structural characteristics, and mineral content of antlers from yearling and adult (4 years of age) red deer fed a balanced diet. Deer (n=35) of different ages (21 yearlings and 14 adults) were studied. A total of 18 stags (11 yearlings and 7 adults) were injected with Cu (0.83 mg Cu/kg BW) every 42 days, whereas the remaining 17 (10 yearlings and 7 adults) were injected with physiological saline solution (control group). The Cu content of serum was analysed at the beginning of the trial and 84 days after the first injection to assess whether the injected Cu was mobilized in blood. Also, the mechanical and structural properties of antlers and the mineral content in their cortical walls were examined at three (yearlings) or four (adults) points along the antler beam. The effect of Cu supplementation was different in yearlings and adults. In yearlings, supplementation increased the Cu content of serum by 28%, but did not affect antler properties. However, in adults, Cu supplementation increased the Cu content of serum by 38% and tended to increase the cortical thickness of antlers (P=0.06). Therefore, we conclude that, even in animals receiving balanced diets, supplementation with Cu could increase antler cortical thickness in adult deer, although not in yearlings. This may improve the trophy value of antlers, as well as having potential implications for bones in elderly humans, should Cu supplementation have similar effects on bones as those observed in antlers.

Type
Research Article
Copyright
© The Animal Consortium 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Association of Official Analytical Chemists (AOAC) 2000. Official methods of analysis, 17th edition. AOAC, Arlington, VA, USA.Google Scholar
Audige, L, Wilson, PR and Morris, RS 1998. A body condition score system and its use for farmed red deer hinds. New Zealand Journal of Agricultural Research 41, 545553.Google Scholar
Baxter, BJ, Andrews, RN and Barrell, GK 1999. Bone turnover associated with antler growth in red deer (Cervus elaphus). Anatomical Records 256, 1419.Google Scholar
Boletín Oficial del Estado 2013. Real Decreto 53/2013, de 1 de febrero, por el que se establecen las normas básicas aplicables para la protección de los animales utilizados en experimentación y otros fines científicos, incluyendo la docencia. BOE 34, 1137011421.Google Scholar
Cappelli, J, García, A, Ceacero, F, Gómez, S, Luna, S, Gallego, L, Gambín, P and Landete-Castillejos, T 2015. Manganese supplementation in deer under balanced diet increases impact energy and contents in minerals of antler bone tissue. PLoS One 10, e0132738.Google Scholar
Carrión, D, García, AJ, Gaspar-López, E, Landete-Castillejos, T and Gallego, L 2008. Development of body condition in hinds of Iberian red deer during gestation and its effects on calf birth weight and milk production. Journal of Experimental Zoology 309, 110.Google Scholar
Ceacero, F, Landete-Castillejos, T, García, AJ, Estévez, JA and Gallego, L 2010. Physiological variables explain mineral intake in Iberian red deer. Physiology and Behavior 100, 122127.CrossRefGoogle ScholarPubMed
Currey, JD, Landete-Castillejos, T, Estévez, JA, Ceacero, F, Olguín, A, García, A and Gallego, L 2009. The mechanical properties of red deer antler bone when used in fighting. Journal of Experimental Biology 212, 39853993.CrossRefGoogle Scholar
Davidson, SK, Siminoski, K, Adachi, JD, Hanley, DA, Goltzman, D, Hodsman, AB, Josse, R, Kaiser, S, Olszynski, WP, Papaioannou, A, Ste-Marie, LG, Kendler, DL, Tenenhouse, A and Brown, JP 2006. Bone strength: the whole is greater than the sum of its parts. Seminars in Arthritis Rheumatism 36, 2231.Google Scholar
Estévez, JA, Landete-Castillejos, T, Martínez, A, García, A, Ceacero, F, Gaspar-López, E, Calatayud, A and Gallego, L 2009. Antler mineral composition of Iberian red deer Cervus elaphus hispanicus is related to mineral profile of diet. Acta Theriologica 54, 235242.Google Scholar
Fairley, R 2008. Acute copper toxicity in deer and enterotoxemia in a 5-year-old stag. In Proceedings of the 25th Annual Conference Deer Branch of the New Zealand Veterinary Association Inc., January 2008, New Zealand, pp. 132–133.Google Scholar
Favus, MJ, Bushinsky, DA and Lemann, J Jr 2006. Regulation of calcium, magnesium, and phosphate metabolism. In Primer on the metabolic bone diseases and disorders of mineral metabolism (ed. MJ Favus), pp 7679. American Society for Bone and Mineral Research, Washington, DC, USA.Google Scholar
Fundación Española para el Desarrollo de la Nutrición Animal 2010. Normas de la Fundación Española para el Desarrollo de la Nutrición Animal de composición y valor nutritivo de los alimentos para la fabricación de piensos compuestos, 3rd edition. Fundación Española para el Desarrollo de la Nutrición Animal, Madrid, Spain.Google Scholar
Gaspar-López, E, Landete-Castillejos, T, Estévez, JA, Ceacero, F, Gallego, L and García, A 2008. Biometrics, testosterone, cortisol and antler growth in Iberian red stags (Cervus elaphus hispanicus). European Journal of Wildlife Research 54, 15.Google Scholar
Gómez, JA, Ceacero, F, Landete-Castillejos, T, Gaspar-López, E, García, AJ and Gallego, L 2012. Factors affecting antler investment in Iberian red deer. Animal Production Science 52, 867873.CrossRefGoogle Scholar
Gómez, S, García, AJ, Luna, S, Kierdorf, U, Kierdorf, H, Gallego, L and Landete-Castillejos, T 2013. Labeling studies on cortical bone formation in the antlers of red deer (Cervus elaphus). Bone 52, 506515.Google Scholar
Grace, ND and Wilson, PR 2002. Trace element metabolism, dietary requirements, diagnosis and prevention of deficiencies in deer. New Zealand Veterinary Journal 50, 252259.Google Scholar
Hyun, TH, Barrett-Connor, E and Milne, DB 2004. Zinc intakes and plasma concentration in men with osteoporosis: the rancho Bernardo study. American Journal of Clinical Nutrition 80, 715721.Google Scholar
Jacob, R, Skala, J, Omaye, S and Turnlund, J 1987. Effect of varying ascorbic acid intakes on copper absorption and ceruloplasmin levels of young men. Journal of Nutrition 117, 21092115.Google Scholar
Kierdorf, U, Kierdorf, H and Boyde, A 2000. Structure and mineralisation density of antler and pedicle bone in red deer (Cervus elaphus L.) exposed to different levels of environmental fluoride: a quantitative backscattered electron imaging study. Journal of Anatomy 196, 7183.Google Scholar
Kučer, N, Kuleš, J, Barić Rafaj, R, Tončić, J, Vicković, I, Štoković, I, Potočnjak, D and Šoštarić, B 2013. Mineral concentrations in plasma of young and adult red deer. Veterinarski Arhiv 83, 425434.Google Scholar
Landete-Castillejos, T, Currey, JD, Estévez, JA, Fierro, Y, Calatayud, A, Ceacero, F, García, AJ and Gallego, L 2010. Do drastic weather effects on diet influence changes in chemical composition, mechanical properties and structure in deer antlers? Bone 47, 815825.Google Scholar
Landete-Castillejos, T, Currey, JD, Estévez, JA, Gaspar-López, E, García, AJ and Gallego, L 2007a. Influence of physiological effort of growth and chemical composition on antler bone mechanical properties. Bone 41, 794803.Google Scholar
Landete-Castillejos, T, Estévez, JA, Ceacero, F, García, AJ and Gallego, L 2012. A review of factors affecting antler composition and mechanics. Frontiers in Bioscience 4, 23282339.Google Scholar
Landete-Castillejos, T, Estévez, JA, Martínez, A, Ceacero, F, García, A and Gallego, L 2007b. Does chemical composition of antler bone reflect the physiological effort made to grow it? Bone 40, 10951102.Google Scholar
Landete-Castillejos, T, García, A and Gallego, L 2007c. Body weight, early growth and antler size influence antler bone mineral composition of Iberian Red Deer (Cervus elaphus hispanicus). Bone 40, 230235.Google Scholar
Lowe, NM, Fraser, WD and Jackson, MJ 2002. Is there a potential therapeutic value of copper and zinc for osteoporosis? Proceedings of the Nutrition Society 61, 181185.Google Scholar
National Research Council (NRC) 2007. Nutrient requirements of small ruminants: sheep, goats, cervids and new world camelids. National Academy Press, Washington, DC, USA.Google Scholar
Opsahl, W, Zeronian, H, Ellison, M, Lewis, D, Rucker, RB and Riggins, RS 1982. Role of copper in collagen cross-linking and its influence on selected mechanical properties of chick bone and tendon. Journal of Nutrition 112, 708716.Google Scholar
Sadeghi, N, Oveisi, MR, Jannat, B, Hajimahmoodi, M, Behzad, M, Behfar, A, Sadeghi, F and Saadatmand, S 2014. The relationship between bone health and plasma zinc, copper lead and cadmium concentration in osteoporotic women. Journal of Environmental Health Science and Engineering 12, 15.Google Scholar
Strause, LG, Hegenauer, J, Saltman, P, Cone, R and Resnick, D 1986. Effects of long-term dietary manganese and copper deficiency on rat skeleton. Journal of Nutrition 116, 135141.Google Scholar
Suttle, NF 1972. Osteoporosis in copper-depleted lambs. Journal of Comparative Pathology 82, 9396.Google Scholar
Suttle, NF 2010. Copper. In Mineral nutrition of livestock, 4th edition (ed. EJ Underwood), pp 255305. CABI Publishing, Wallingford, UK.Google Scholar
Wilson, PR and Grace, ND 2001. A review of tissue reference values used to assess the trace element status of farmed red deer (Cervus elaphus). New Zealand Veterinary Journal 49, 126132.Google Scholar
Winge, DR and Mehra, RK 1990. Host defenses against copper toxicity. International Journal of Experimental Pathology 31, 4783.Google Scholar