Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-17T16:24:42.894Z Has data issue: false hasContentIssue false

Detecting Global Change In The Arctic

Published online by Cambridge University Press:  20 January 2017

Gunter Weller*
Affiliation:
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775-0800, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Numerical models have predicted global temperature increases due to rising atmospheric CO2 levels, which should be detectable by now, but have not yet been identified in an unambiguous manner. This detection is complicated by inadequate data and by the fact that climate can be changed by factors other than CO2 increases. A systematic monitoring strategy is therefore needed to assess global change. In the Arctic, cryospheric parameters, including sea ice, snow cover, glaciers and permafrost are sensitive indicators of climate change and their monitoring by satellites and surface observations is of particular interest. Sea ice and snow cover are perhaps the most important of these parameters. They respond quickly to climate change, and in turn directly affect the climate through feedback processes; major changes in ice and snow extent and thickness can be expected as a consequence of climate change. Glaciers also respond to climatic variability by changes in their mass balance which can be monitored. Melting glaciers raise the level of the world ocean, and the glaciers of the sub-Arctic, particularly in the Alaskan coastal mountains, have been major contributors to the observed sea-level rise of about 20–30 cm over the last century. Past temperature changes are recorded in glacier ice and permafrost and techniques are now available to reconstruct past climates from these sources.

The numerical models of the CO2 greenhouse effect show the polar regions to be affected most strongly by greenhouse warming, and sea ice, snow, glaciers and permafrost should be good indicators of such a global change. The known responses and sensitivities of cryospheric parameters to climate change are reviewed, and a monitoring strategy is suggested. The Alaska SAR Facility, utilizing synthetic aperture radar from several spacecraft scheduled for launch in the 1990s, will be a key facility for collecting and analyzing climate-related satellite data. Its monitoring capabilities are briefly reviewed.

Type
Research Article
Copyright
Copyright © International Glaciological Society 1990