Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-01T13:19:34.359Z Has data issue: false hasContentIssue false

Geochemistry of lake sediments from the South Shetland Islands and James Ross Archipelago, north Antarctic Peninsula

Published online by Cambridge University Press:  30 May 2024

Silvia H. Coria
Affiliation:
Instituto Antártico Argentino, 25 de Mayo 1143, San Martín, Prov. Buenos Aires, Argentina
Soledad Pérez Catán
Affiliation:
Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche (CAB), Comisión Nacional de Energía Atómica (CNEA), Av. Bustillo km 9.5, (8400), Bariloche, Argentina
Andrea I. Pasquini
Affiliation:
Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), CONICET/Universidad Nacional de Córdoba, Av. Vélez Sarsfield, 1611, X5016CGA Córdoba, Argentina Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield, 1611, X5016CGA Córdoba, Argentina
María Arribere
Affiliation:
Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche (CAB), Comisión Nacional de Energía Atómica (CNEA), Av. Bustillo km 9.5, (8400), Bariloche, Argentina
Rosemary Vieira
Affiliation:
Instituto de Geociências, Universidade Federal Fluminense, Niteroi, RJ, Brazil
Luiz H. Rosa
Affiliation:
Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, PO Box 486, Belo Horizonte, MG 31270-901, Brazil
Juan M. Lirio
Affiliation:
Instituto Antártico Argentino, 25 de Mayo 1143, San Martín, Prov. Buenos Aires, Argentina
Karina L. Lecomte*
Affiliation:
Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), CONICET/Universidad Nacional de Córdoba, Av. Vélez Sarsfield, 1611, X5016CGA Córdoba, Argentina Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield, 1611, X5016CGA Córdoba, Argentina

Abstract

The geochemistry of lake sediments provides valuable information on environmental conditions and geochemical processes in polar regions. To characterize geochemical composition and to analyse weathering and provenance, 26 lakes located in six islands of the South Shetland Islands (SSI) and James Ross Archipelago (JRA) were analysed. Regarding major composition, the studied lake sediments correspond to ferruginous mudstones and to a lesser extent to mudstones. The weathering indices indicate incipient chemical alteration (Chemical Index of Alteration = 52.6; Plagioclase Index of Alteration = 57.6). The La-Th-Sc plot shows different provenance signatures. SSI lake sediments correspond to oceanic island arcs, whereas those of JRA denote a signal of continental arcs with mixed sources. In James Ross Island lake sediments are of continental arcs (inland lakes), oceanic island arcs (coastal lakes) and a middle signature (foreland lakes). Multi-elemental analysis indicates that the sediments are enriched from regional basalts in Ba, Rb, Th, Cs and U (typical of silica-rich rocks) and depleted in Cr and Co due to mafic mineral weathering. The geochemical signals identified by principal component analysis enable us to group the sediments according to the studied islands and their geomorphological characteristics. This study underlines the importance of knowing the geochemical background levels in pristine lake sediments to evaluate potential future anthropogenic effects.

Type
Earth Sciences
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Antarctic Science Ltd

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alqahtani, F. & Khalil, M. 2021. Geochemical analysis for evaluating the paleoweathering, paleoclimate, and depositional environments of the siliciclastic Miocene-Pliocene sequence at Al-Rehaili area, northern Jeddah, Saudi Arabia. Arabian Journal of Geosciences, 1, 10.1007/s12517-021-06538-0.Google Scholar
Armstrong-Altrin, J.S. & Verma, S.P. 2005. Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic setting. Sedimentary Geology, 177, 10.1016/j.sedgeo.2005.02.004.CrossRefGoogle Scholar
Bhatia, M.R. 1983. Plate tectonics and geochemical composition of sandstone. Journal of Geology, 91, 10.1086/628815.CrossRefGoogle Scholar
Bhatia, M.R. & Crook, K.A.W. 1986. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 10.1007/BF00375292.CrossRefGoogle Scholar
Bishop, J.L., Lougear, A., Newton, J., Doran, P.T., Froeschl, H., Trautwein, A.X., et al. 2001. Mineralogical and geochemical analyses of Antarctic lake sediments: a study of reflectance and Mössbauer spectroscopy and C, N, and S isotopes with applications for remote sensing on Mars. Geochimica et Cosmochimica Acta, 65, 10.1016/S0016-7037(01)00651-2.CrossRefGoogle Scholar
Björck, S., Olsson, S., Ellis-Evans, C., Håkansson, H., Humlum, O. & Lirio, J.M. 1996. Late Holocene palaeoclimatic records from lake sediments on James Ross Island, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 121, 10.1016/0031-0182(95)00086-0.CrossRefGoogle Scholar
Bulínová, M., Kohler, T.J., Van de Vijver, J.K.B., Nývlt, D., Nedbalová, L., Coria, S.H., et al. 2020. Comparison of diatom paleo-assemblages with adjacent limno-terrestrial communities on Vega Island, Antarctic Peninsula. Water, 12, 10.3390/w12051340.CrossRefGoogle Scholar
Caracciolo, L., Tolosana-Delgado, R., Le Pera, E., Von Eynatten, H., Arribas, J. & Tarquini, S. 2012. Influence of granitoid textural parameters on sediment composition: implications for sediment generation. Sedimentary Geology, 280, 10.1016/j.sedgeo.2012.07.005.CrossRefGoogle Scholar
Čejka, T., Nývlt, D., Kopalová, K., Bulínová, M., Kavan, J., Lirio, J.M., et al. 2020. Timing of the neoglacial onset on the North-Eastern Antarctic Peninsula based on lacustrine archive from Lake Anónima, Vega Island. Global and Planetary Change, 184, 10.1016/j.gloplacha.2019.103050.CrossRefGoogle Scholar
Chipera, S. & Bish, D. 2013. Fitting full X-ray diffraction patterns for quantitative analysis: a method for readily quantifying crystalline and disordered phases. Advances in Materials Physics and Chemistry, 3, 10.4236/ampc.2013.31A007.CrossRefGoogle Scholar
Coria, S.H., Colman, D., Vignoni, P., Lirio, J.M., Lecomte, K., Kohler, T., et al. 2017. Caracterización microbiológica, geomorfológica y fisicoquímica de siete lagunas del archipiélago James Ross. In Guaiquil, I., Leppe, M., Rojas, P., & Canales, R., eds, Visiones de Ciencia Antártica, IX Congreso Latinoamericano de Ciencias Antártica, Punta Arenas-Chile. Punta Arenas: Publicación del Instituto Antártico Chileno, 230233.Google Scholar
Cullers, R.L. 1994. The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian Age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimica et Cosmochimica Acta, 58, 10.1016/0016-7037(94)90224-0CrossRefGoogle Scholar
De Corte, F. & Simonits, A. 2003. Recommended nuclear data for use in the k 0 standardization of neutron activation analysis. Atomic Data and Nuclear Data Tables, 85, 10.1016/S0092-640X(03)00036-6.CrossRefGoogle Scholar
Depetris, P.J., Pasquini, A.I. & Lecomte, K.L. 2014. Weathering and the riverine denudation of continents. Berlin: Springer, 395 pp.CrossRefGoogle Scholar
Drago, E.C. 1983. Estudios limnológicos en la Península Potter, Isla 25 de Mayo, (Shetland del Sur): Morfología de ambientes lénticos. Contribución del Instituto Antártico Argentino, 265, 120.Google Scholar
Dury, G. 1951. Quantitative measurement of available relief and of depth of dissection. Geological Magazine, 88, 10.1017/S0016756800069776.CrossRefGoogle Scholar
Elderfield, H.R., Upstill-Goddard, R. & Sholkovitz, E.R. 1990. The rare earth elements in rivers, estuaries and coastal sea waters: processes affecting crustal input of elements to the ocean and their significance to the composition of seawater. Geochimica et Cosmochimica Acta, 54, 10.1016/0016-7037(90)90432-K.CrossRefGoogle Scholar
Fedo, C.M., Nesbitt, H.W. & Young, G.M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Fernández, G.C., Lecomte, K., Vignoni, P., Soto Rueda, E., Coria, S.H., Lirio, J.M. & Mlewski, E.C. 2022. Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems from James Ross Archipelago (West Antarctica). Polar Biology, 45, 10.1007/s00300-021-02997-z.CrossRefGoogle Scholar
Ferron, F.A., Simões, J.C., Aquino, F.E. & Setzer, A.W. 2004. Air temperature time series for King George Island, Antarctica. Pesquisa Antártica Brasileira, 4, 155169.CrossRefGoogle Scholar
Firestone, R.B. & Shirley, V.S. 1996. Table of isotopes, vols I and II. New York: John Wiley and Sons.Google Scholar
Floyd, P.A. & Leveridge, B.E. 1987. Tectonic environment of Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. Journal of Geological Society, 144, 10.1144/gsjgs.144.4.0531.CrossRefGoogle Scholar
Fonseca, B.M, Câmara, P.E.A.S., Ogaki, M.B., Pinto, O.H.B., Lirio, J.M., Coria, S.H., et al. 2021. Green algae (Viridiplantae) in sediments from three lakes on Vega Island, Antarctica, assessed using DNA metabarcoding. Molecular Biology Reports, 49, 10.1007/s11033-021-06857-1.Google ScholarPubMed
García, M.G., Lecomte, K.L., Pasquini, A.I., Formica, S.M. & Depetris, P.J. 2007. Sources of dissolved REE in mountainous streams draining granitic rocks, Sierras Pampeanas (Córdoba, Argentina). Geochimica et Cosmochimica Acta, 71, 10.1016/j.gca.2007.09.017.CrossRefGoogle Scholar
Gonçalves, V.N., De Souza, L.M.D., Lirio, J.M., Coria, S.H., Lopes, F.A.C., Convey, P., et al. 2022. Diversity and ecology of fungal assemblages present in lake sediments at Clearwater Mesa, James Ross Island, Antarctica, assessed using metabarcoding of environmental DNA. Fungal Biology, 126, 10.1016/j.funbio.2022.08.002.CrossRefGoogle Scholar
Gonçalves, V.N., Lirio, J.M., Coria, S.H., Lopes, F.A.C., Convey, P., De Oliveira, F.S., et al. 2023. Soil fungal diversity and ecology assessed using DNA metabarcoding along a deglaciated chronosequence at Clearwater Mesa, James Ross Island, Antarctic Peninsula. Biology, 12, 10.3390/biology12020275.CrossRefGoogle Scholar
Grunow, A.M., Dalziel, I.W., Harrison, T.M. & Heizler, M.T. 1992. Structural geology and geochronology of subduction complexes along the margin of Gondwanaland: new data from the Antarctic Peninsula and southernmost Andes. Geological Society of America Bulletin, 104, 10.1130/0016-7606(1992)104<1497:SGAGOS>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Hannigan, R. & Sholkovitz, E. 2001. The development of middle rare earth element enrichments in freshwaters: weathering of phosphate minerals. Chemical Geology, 175, 10.1016/S0009-2541(00)00355-7.CrossRefGoogle Scholar
Herron, M.M. 1988. Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58, 10.1306/212F8E77-2B24-11D7-8648000102C1865D.Google Scholar
Houghton, J.T., Ding, Y.D.J.G., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X. & Johnson, C.A. (eds), 2001. Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 881 pp.Google Scholar
Hrbáček, F., Kňažková, M., Nývlt, D., Láska, K., Mueller, C.W. & Ondruch, J. 2017. Active layer monitoring at CALM-S site near J.G.Mendel Station, James Ross Island, eastern Antarctic Peninsula. Science of the Total Environment, 601–602, 10.1016/j.scitotenv.2017.05.266.CrossRefGoogle Scholar
Irurzun, M.A., Chaparro, M.A., Sinito, E.A.M., Gogorza, C.S.G., Nuñez, H. Nowaczyk, N.R. & Böhnel, H.N. 2017. Relative palaeointensity and reservoir effect on Lake Esmeralda, Antarctica. Antarctic Science, 29, 10.1017/S0954102017000050.CrossRefGoogle Scholar
Kavan, J., Nedbalová, L., Nývlt, D., čejka, T. & Lirio, J.M. 2020. Status and short-term environmental changes of lakes in the area of Devil's Bay, Vega Island, Antarctic Peninsula. Antarctic Science, 33, 10.1017/S0954102020000504.Google Scholar
Košler, J., Magna, T., Mlčoch, B., Mixa, P., Nývlt, D. & Holub, F.V. 2009. Combined Sr, Nd, Pb and Li isotope geochemistry of alkaline lavas from northern James Ross Island (Antarctic Peninsula) and implications for back-arc magma formation, Chemical Geology, 258, 10.1016/j.chemgeo.2008.10.006.CrossRefGoogle Scholar
Laveuf, C. & Cornu, S. 2009. A review on the potentiality of rare Earth elements to trace pedogenetic processes. Geoderma, 154, 112.CrossRefGoogle Scholar
Lecomte, K.L., Sarmiento, A., Borrego, J. & Nieto, J.M. 2017. Rare Earth elements mobility processes in an AMD-affected estuary: Huelva Estuary (SW Spain). Marine Pollution Bulletin, 121, 10.1016/j.marpolbul.2017.06.030.CrossRefGoogle Scholar
Lecomte, K.,L., Echegoyen, C.V., Vignoni, P.A., Kopalová, K., Kohler, T.J., Coria, S.H. & Lirio, J.M. 2020a. Data set of dissolved major and trace elements from the lacustrine systems of Clearwater Mesa, Antarctica. Data in Brief, 30, 10.1016/j.dib.2020.105438.CrossRefGoogle ScholarPubMed
Lecomte, K.L., Vignoni, P.A., Cordoba, F.E., Chaparro, M.A.E., Chaparro, M.A.E., Kopalova, K., et al. 2016. Hydrological systems from the Antarctic Peninsula under climate change: James Ross Archipelago as study case. Environmental Earth Sciences, 75, 10.1007/s12665-016-5406-y.CrossRefGoogle Scholar
Lecomte, K.L., Vignoni, P.A., Echegoyen, C.V., Santolaya, P., Kopalova, K., Kohler, T.J., et al. 2020b. Dissolved major and trace geochemical dynamics in Antarctic lacustrine systems. Chemosphere, 240, 10.1016/j.chemosphere.2019.124938.CrossRefGoogle ScholarPubMed
Li, C., Michel, C., Seland Graff, L., Bethke, I., Zappa, G., Bracegirdle, T.J., et al. 2018. Midlatitude atmospheric circulation responses under 1.5 and 2.0°C warming and implications for regional impacts. Earth System Dynamics, 9, 10.5194/esd-9-359-2018.CrossRefGoogle Scholar
Malandrino, M., Abollino, O., Buoso, S., Casalino, C.E., Gasparon, M., Giacomino, A., et al. 2009. Geochemical characterisation of Antarctic soils and lacustrine sediments from Terra Nova Bay. Microchemical Journal, 92, 10.1016/j.microc.2008.09.003.CrossRefGoogle Scholar
Martínez-Cortizas, A., Rozas Muñiz, I., Taboada, T., Toro, M., Granados, I., Giralt, S. & Pla-Rabés, S. 2014. Factors controlling the geochemical composition of limnopolar lake sediments (Byers Peninsula, Livingston Island, South Shetland Island, Antarctica) during the last ca. 1600 years. Solid Earth, 5, 10.5194/se-5-651-2014.CrossRefGoogle Scholar
McLennan, S.M. 1993. Weathering and global denudation. Journal of Geology, 101, 295303.CrossRefGoogle Scholar
McLennan, S.M. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2, 10.1029/2000GC000109.CrossRefGoogle Scholar
Mink, S., Maestro, A., López-Martinez, J., Schmid, T., Galindo-Zaldívar, J. & Trouv, R.A.J. 2014. Morphostructural analysis and Cenozoic evolution of Elephant Island, Southern Scotia Arc, Antarctica. International Journal of Earth Sciences, 104, 10.1007/s00531-014-1099-1.Google Scholar
Mishra, M. & Sen, S. 2012. Provenance, tectonic setting and source-area weathering of Mesoproterozoic Kaimur Group, Vindhyan Supergroup, central India. Geologica Acta, 10, 10.1344/105.000001759.Google Scholar
Mughabghab, S.F. 2003. Thermal neutron capture cross sections resonance integrals and g-factors. Vienna: IAEA. Retrieved from https://www.osti.gov/etdeweb/servlets/purl/20332542Google Scholar
Mughabghab, S.F., Divadeenam, M. & Holden, N.E. 1981. Neutron cross sections. Volume 1: neutron resonance parameters and thermal cross sections, part A: Z=1–60. Cambridge, MA: Academic Press, 664 pp,Google Scholar
Navas, A., Soto, J. & López-Martínez, J. 2005. Radionuclides in soils of Byers Peninsula, South Shetland Islands, western Antarctica. Applied Radiation and Isotopes, 62, 10.1016/j.apradiso.2004.11.007.CrossRefGoogle ScholarPubMed
Nedbalová, L., Nývlt, D., Kopáček, J., Sobr, M. & Elster, J. 2013. Freshwater lakes of Ulu Peninsula, James Ross Island, north-east Antarctic Peninsula: origin, geomorphology and physical and chemical limnology. Antarctic Science, 25, 10.1017/S0954102012000934.CrossRefGoogle Scholar
Nelson, P.H.H. 1966. The James Ross Island Volcanic Group of north-east Graham Land. British Antarctic Survey Scientific Report, 54, 162.Google Scholar
Nesbitt, H.W. & Young, G.M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 10.1038/299715a0.CrossRefGoogle Scholar
Nesbitt, H.W., Young, G.M., McLennan, S.M. & Keays, R.R. 1996. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. Journal of Geology, 104, 10.1086/629850.CrossRefGoogle Scholar
Ogaki, M., Câmara, P., Pinto, O., Lirio, J.M., Coria, S., Vieira, R., et al. 2021. Diversity of fungal DNA in lake sediments on Vega Island, north-east Antarctic Peninsula assessed using DNA metabarcoding. Extremophiles, 25, 10.1007/s00792-021-01226-z.CrossRefGoogle ScholarPubMed
Oliva, M., Navarro, F., Hrbáček, H., Hernández, A., Nývlt, D., Pereira, P., et al. 2017. Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Science of the Total Environment, 580, 10.1016/j.scitotenv.2016.12.030.CrossRefGoogle ScholarPubMed
Petsch, C., Rosa, K.K., Oliveira, M.A.G., Velho, L.LF., Silva, S.LC., Sottile, M.E., et al. 2022. An inventory of glacial lakes in the South Shetland Islands (Antarctica): temporal variation and environmental patterns. Annals of the Brazilian Academy of Sciences, 94(Suppl. 1), 10.1590/0001-3765202220210683.CrossRefGoogle ScholarPubMed
Pérez-Rodríguez, M., Biester, H., Aboal, J.R., Toro, M. & MartÍnez Cortizas, A. 2019. Thawing of snow and ice caused extraordinary high and fast mercury fluxes to lake sediments in Antarctica. Geochimica et Cosmochimica Acta, 248, 109122.CrossRefGoogle Scholar
Píšková, A., Roman, M., Bulínová, M., Pokorný, M., Sanderson, D., Cresswell, A., et al. 2019. Late-Holocene palaeoenvironmental changes at Lake Esmeralda (Vega Island, Antarctic Peninsula) based on a multi-proxy analysis of laminated lake sediment. The Holocene, 29, 10.1177/0959683619838033.CrossRefGoogle Scholar
Quayle, W.C., Peck, L.S., Peat, H., Ellis-Evans, J.C. & Harrigan, P.R. 2002. Extreme responses to climate change in Antarctic lakes. Science, 295, 10.1126/science.1064074.CrossRefGoogle ScholarPubMed
Roman, M., Nedbalová, L., Kohler, T.J., Lirio, J.M., Coria, S.H., Kopáček, J., et al. 2019. Lacustrine systems of Clearwater Mesa (James Ross Island, north-eastern Antarctic Peninsula): geomorphological setting and limnological characterization. Antarctic Science, 31, 10.1017/S0954102019000178.CrossRefGoogle Scholar
Roser, B.P. & Korsch, R.J. 1986. Determination of tectonic setting sandstones-mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, 10.1080/08120099.2023.2137585.CrossRefGoogle Scholar
Sergeev, N. 2023. Quantifying weathering intensity using chemical proxies: a weathering index AFB. Australian Journal of Earth Sciences, 70, 10.1080/08120099.2023.2137585.CrossRefGoogle Scholar
Smellie, J.J., Hunt, R.J., McIntosh, W.C. & Esser, R.P. 2021. Lithostratigraphy, age and distribution of Eocene volcanic sequences on eastern King George Island, South Shetland Islands, Antarctica. Antarctic Science, 33, 10.1017/S0954102021000213.Google Scholar
Smol, J.P. & Douglas, M.S. 2007. From controversy to consensus: making the case for recent climate change in the Arctic using lake sediments. Frontiers in Ecology and the Environment, 5, 10.1890/1540-9295(2007)5[466:FCTCMT]2.0.CO;2.CrossRefGoogle Scholar
Souza, L.M.D., Ogaki, M.B. Teixeira, E.A.A., Menezes, G.C.A., Convey, P., Rosa, C.A. & Rosa, L.H. 2022. Communities of culturable freshwater fungi present in Antarctic lakes and detection of their low-temperature-active enzymes. Brazilian Journal of Microbiology, 1, 10.1007/s42770-022-00834-x.Google Scholar
Srivastava, A.K., Randive, K.R. & Khare, N. 2013. Mineralogical and geochemical studies of glacial sediments from Schirmacher Oasis, East Antarctica. Quaternary International, 292, 10.1016/j.quaint.2012.07.028.CrossRefGoogle Scholar
Sterken, M., Roberts, S.J., Hodgson, D.A., Vyverman, W., Balbo, A.L., Sabbe, K., et al. 2012. Holocene glacial and climate history of Prince Gustav Channel, northeastern Antarctic Peninsula. Quaternary Science Review, 31, 10.1016/j.quascirev.2011.10.017.CrossRefGoogle Scholar
Stokes, C.R., Abram, N.J., Bentley, M.J., Edwards, T.L., England, M.H., Foppert, A., et al. 2022. Response of the East Antarctic Ice Sheet to past and future climate change. Nature, 608, 10.1038/s41586-022-04946-0.CrossRefGoogle ScholarPubMed
Taylor, M. & McLennan, S.M. 1989. Rare-earth elements in sedimentary rocks. Influence of provenance and sedimentary processes. In Lipin, B.P. & McKay, G.A., eds, Geochemistry and mineralogy of rare earth elements. Chantilly, VA: Mineralogical Society of America, 169200.Google Scholar
Toro, M., Granados, I., Pla, S., Giralt, S., Antoniades, D., Galan, L., et al. 2013. Chronostratigraphy of the sedimentary record of Limnopolar Lake, Byers Peninsula, Livingston Island, Antarctica. Antarctic Science, 25, 10.1017/S0954102012000788.CrossRefGoogle Scholar
Trouw, R.A.J., Heilbron, M., Ribeiro, A., Paciullo, F.V.P., Valeriano, C.M., Almeida, J.C.H., et al. 2000. The central segment of the Ribeira belt. In Cordani, U.G., Milani, E.J., Thomaz Filho, A. & Campos, D.A., eds, Tectonic evolution of South America. 31st International Geological Congress, Rio de Janeiro, Brazil. Rio de Janeiro: International Geological Congress, 287310.Google Scholar
Tuli, J.K. 2005. Nuclear wallet cards, 7th edition. New York: Brookhaven National Laboratory, 115 pp.Google Scholar
Turner, J., Barrand, N.E., Bracegirdle, T.J., Convey, P., Hodgson, D.A., Jarvir, M., et al. 2014. Antarctic climate change and the environment: an update. Polar Record, 50, 10.1017/S0032247413000296.CrossRefGoogle Scholar
Van Lipzig, N.P.M., Turner, J., Colwell, S.R. & Van Den Broeke, M.R. 2004. The near-surface wind field over the Antarctic continent. International Journal of Climatology, 24, 10.1002/joc.1090.CrossRefGoogle Scholar
Vaughan, D.G., Marshall, G.J., Connolley, W.M., Parkinson, C., Mulvaney, R., Hodgson, D.A., et al. 2003. Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change, 60, 10.1023/A:1026021217991.CrossRefGoogle Scholar
Wasiłowska, A., Tatur, A., Pushina, Z., Barczuk, A. & Verkulich, S. 2017. Impact of the ‘Little Ice Age’ climate cooling on the maar lake ecosystem affected by penguins: a lacustrine sediment record, Penguin Island, West Antarctica. The Holocene, 27, 10.1177/0959683616683254.CrossRefGoogle Scholar
Whitehouse, P.L., Bentley, M.J. & Le Brocq, A.M. 2012. A deglacial model for Antarctica: geological constraints and glaciological modelling as a basis for a new model of Antarctic glacial isostatic adjustment. Quaternary Science Review, 32, 10.1016/j.quascirev.2011.11.016.CrossRefGoogle Scholar
Supplementary material: File

Coria et al. supplementary material 1

Coria et al. supplementary material
Download Coria et al. supplementary material 1(File)
File 11.5 KB
Supplementary material: File

Coria et al. supplementary material 2

Coria et al. supplementary material
Download Coria et al. supplementary material 2(File)
File 57.5 KB