Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-26T19:30:53.023Z Has data issue: false hasContentIssue false

Stability and endemicity of benthic diatom assemblages from different substrates in a maritime stream on Byers Peninsula, Livingston Island, Antarctica: the role of climate variability

Published online by Cambridge University Press:  20 March 2013

Sergi Pla-Rabes*
Affiliation:
CSIC-CEAB, Biogeodynamics and Biodiversity group, C/ Carrer Acces Cala St Francesc 14, 17300 Blanes, Girona, Spain CREAF, Cerdanyola del Vallès, E-08193, Catalonia, Spain
Manuel Toro
Affiliation:
Centro de Estudios Hidrográficos, CEDEX, 28005 Madrid, Spain
Bart Van De Vijver
Affiliation:
National Botanic Garden of Belgium, Department of Bryophyta & Thallophyta, Domein van Bouchout, B-1860 Meise, Belgium
Carlos Rochera
Affiliation:
Instituto Cavanilles de Biodiversidad y Biología Evolutiva & Departamento de Microbiología y Ecología, Universitat de Valencia, 46100 Burjassot, Spain
Juan Antonio Villaescusa
Affiliation:
Instituto Cavanilles de Biodiversidad y Biología Evolutiva & Departamento de Microbiología y Ecología, Universitat de Valencia, 46100 Burjassot, Spain
Antonio Camacho
Affiliation:
Instituto Cavanilles de Biodiversidad y Biología Evolutiva & Departamento de Microbiología y Ecología, Universitat de Valencia, 46100 Burjassot, Spain
Antonio Quesada
Affiliation:
Departamento de Biología, Universidad Autónoma de Madrid, C/Darwin, 2, 28049 Madrid, Spain

Abstract

Diatom assemblages from four different substrates from a stream on Byers Peninsula were analysed during the summer. The substrate type was the main factor explaining the variability in the diatom assemblages. Sandy biofilms showed a higher diversity and a greater number of endemic species. Two main hydrological regimes were observed: 1) a hydrologically unstable period with high variability in stream flow and successive freezing and thawing periods, 2) a late summer hydrologically stable period, characterized by low stream velocity and variability. The structure of the diatom communities was different between the two hydrological periods, although the substrate modulated the difference. The diatom assemblages showed low similarity among the substrates and high dominance of endemic species during early summer. The late summer community showed high dominance of motile cosmopolitan species on all substrate types. As the length of both hydrological regimes would ultimately be driven by climatic variability, the predicted climate warming could reduce overall stream diversity. Hence, subtle changes could alter the length of both hydrological periods. The relationship between diatom species association with different substrates and hydrological regimes could be relevant for tracking past climate variability using diatom palaeorecords.

Type
Research Articles
Copyright
Copyright © Antarctic Science Ltd 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bañón, M., Justel, A., Velazquez, D.Quesada, A. 2013. Regional weather survey on Byers Peninsula, Livingston Island, South Shetland Islands, Antarctica. Antarctic Science, 25, 10.1017/S0954102012001046.CrossRefGoogle Scholar
Battarbee, R.W., Jones, V.J., Flower, R.J., Cameron, N.G., Bennion, H., Carvalho, L.Juggins, S. 2001. Diatoms. In Smol, J.P., Birks, H.J. &Last, W.M., eds. Tracking environmental change using lake sediments. Volume 3. Terrestrial, algal, and siliceous indicators. Dordrecht: Kluwer, 155202.Google Scholar
Biggs, B.J.F. 1996. Patterns in benthic algae of streams. In Stevenson, R.J., Bothwell, M.&Lowe, R.L., eds. Algal ecology: freshwater benthic ecosystems. San Diego, CA: Academic Press, 3156.CrossRefGoogle Scholar
Biggs, B.J.F.Smith, R.A. 2002. Taxonomic richness of stream benthic algae: effects of flood disturbance and nutrients. Limnology and Oceanography, 47, 11751186.CrossRefGoogle Scholar
Biggs, B.J.F., Nikora, V.I.Snelder, T.H. 2005. Linking scales of flow variability to lotic ecosystem structure and function. River Research and Applications, 21, 283298.CrossRefGoogle Scholar
Brown, J.H., Marquet, P.A.Taper, M.L. 1993. Evolution of body size: consequences of an energetic definition of fitness. American Naturalist, 142, 573584.CrossRefGoogle ScholarPubMed
Carey, S.K.Woo, M.K. 1998. Snowmelt hydrology of two subarctic slopes, southern Yukon, Canada. Nordic Hydrology, 29, 331346.CrossRefGoogle Scholar
Clarke, K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Austral Ecology, 18, 117143.CrossRefGoogle Scholar
Convey, P., Bindschadler, R., Di Prisco, G., Fahrbach, E., Gutt, J., Hodgson, D.A., Mayewski, P.A., Summerhayes, C.P.Turner, J. 2009. Antarctic climate change and the environment. Antarctic Science, 21, 541563.CrossRefGoogle Scholar
Chesson, P. 2000. Mechanism of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343366.CrossRefGoogle Scholar
Davey, M.C. 1989. The effects of freezing and desiccation on photosynthesis and survival of terrestrial Antarctic algae and cyanobacteria. Polar Biology, 10, 2936.CrossRefGoogle Scholar
Davey, M.C. 1993. Carbon and nitrogen dynamics in a Maritime Antarctic stream. Freshwater Biology, 30, 319330.CrossRefGoogle Scholar
De Cáceres, M., Legendre, P.Moretti, M. 2010. Improving indicator species analysis by combining groups of sites. Oikos, 119, 16741684.CrossRefGoogle Scholar
Doyle, M.W., Stanley, E.H., Strayer, D.L., Jacobson, R.B.Schmidt, J.C. 2005. Effective discharge analysis of ecological processes in streams. Water Resources Research, 41, 116.CrossRefGoogle Scholar
Elster, J.Komarek, O. 2003. Ecology of periphyton in a meltwater stream ecosystem in the Maritime Antarctic. Antarctic Science, 15, 189201.CrossRefGoogle Scholar
Esposito, R.M.M., Horn, S.L., McKnight, D.M., Cox, M.J., Grant, M.C., Spaulding, S.A., Doran, P.T.Cozzetto, K.D. 2006. Antarctic climate cooling and response of diatoms in glacial meltwater streams. Geophysical Research Letters, 10.1029/2006GL025903.CrossRefGoogle Scholar
Esposito, R.M.M., Spaulding, S.A., McKnight, D.M., van De Vijver, B., Kopalová, K., Lubinski, D., Hall, B.Whittaker, T. 2008. Inland diatoms from the McMurdo Dry Valleys and James Ross Island, Antarctica. Botany, 86, 13781392.CrossRefGoogle Scholar
Fernández-Valiente, E., Camacho, A., Rochera, C., Rico, E., Vincent, W.F.Quesada, A. 2007. Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica). FEMS Microbiology Ecology, 59, 377385.CrossRefGoogle Scholar
Hart, D.D.Finelli, C.M. 1999. Physical-biological coupling in streams: the pervasive effects of flow on benthic organisms. Annual Review of Ecology and Systematics, 30, 363395.CrossRefGoogle Scholar
Hawes, I.Brazier, P. 1991. Freshwater stream ecosystems of James Ross Island, Antarctica. Antarctic Science, 3, 265271.CrossRefGoogle Scholar
Howard-Williams, C., Vincent, C.L., Broady, P.A.Vincent, W.F. 1986. Antarctic stream ecosystems: variability in environmental properties and algal community structure. Internationale Revue der Gesamten Hydrobiologie und Hydrographie, 71, 511544.CrossRefGoogle Scholar
Inbar, M. 1995. Fluvial morphology and streamflow on Deception Island, Antarctica. Geografiska Annaler, 77A, 221230.CrossRefGoogle Scholar
Jost, L. 2007. Partitioning diversity into independent alpha and beta components. Ecology, 88, 24272439.CrossRefGoogle ScholarPubMed
Kopalová, K.van de Vijver, B. 2013. Structure and ecology of freshwater benthic diatom communities from Byers Peninsula, Livingston Island, South Shetland Islands. Antarctic Science, 25, 10.1017/S0954102012000764.CrossRefGoogle Scholar
Kopalová, K., Elster, J., Nedbalová, L.van De Vijver, B. 2009. Three new terrestrial diatom species from seepage areas on James Ross Island (Antarctic Peninsula region). Diatom Research, 24, 113122.CrossRefGoogle Scholar
Larson, C.A.Passy, S.I. 2012. Taxonomic and functional composition of the algal benthos exhibits similar successional trends in response to nutrient supply and current velocity. FEMS Microbiology Ecology, 80, 352362.CrossRefGoogle ScholarPubMed
Ledger, M.E., Harris, R.M.L., Armitage, P.D.Milner, A.M. 2008. Disturbance frequency influences patch dynamics in stream benthic algal communities. Oecologia, 155, 809819.CrossRefGoogle ScholarPubMed
Legendre, P.Gallagher, E.D. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271280.CrossRefGoogle ScholarPubMed
Legendre, P.Legendre, L. 1998. Numerical ecology. Amsterdam: Elsevier, 870 pp.Google Scholar
Luce, J.J., Cattaneo, A.Lapointe, M.F. 2010a. Spatial patterns in periphyton biomass after low-magnitude flow spates: geomorphic factors affecting patchiness across gravel–cobble riffles. Journal of the North American Benthological Society, 29, 614626.CrossRefGoogle Scholar
Luce, J.J., Steele, R.Lapointe, M.F. 2010b. A physically based statistical model of sand abrasion effects on periphyton biomass. Ecological Modelling, 221, 353361.CrossRefGoogle Scholar
Luttenton, M.R.Baisden, C. 2006. The relationships among disturbance, substratum size and periphyton community structure. Hydrobiologia, 561, 111117.CrossRefGoogle Scholar
Magurran, A.E. 2004. Measuring biological diveristy. Oxford: Blackwell, 256 pp.Google Scholar
McKnight, D.M., Gooseff, M.N., Vincent, W.F.Peterson, B.J. 2008. High latitude rivers and streams. In Vincent, W.F. &Laybourn-Parry, J., eds. Polar lakes and rivers: limnology of Arctic and Antarctic aquatic ecosystems. Oxford: Oxford University Press, 83102.CrossRefGoogle Scholar
Parker, S.M.Huryn, A.D. 2011. Effects of natural disturbance on stream communities: a habitat template analysis of arctic headwater streams. Freshwater Biology, 56, 13421357.CrossRefGoogle Scholar
Passy, S.I. 2007. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquatic Botany, 86, 171178.CrossRefGoogle Scholar
Peterson, C.G. 1996. Response of algae to natural physical disturbance. In Stevenson, R.J., Bothwell, M. &Lowe, R.L., eds. Algal ecology: freshwater benthic ecosystems. San Diego, CA: Academic Press, 373402.Google Scholar
Pizarro, H.Vinocur, A. 2000. Epilithic biomass in an outflow stream at Potter Peninsula, King George Island, Antarctica. Polar Biology, 23, 851857.CrossRefGoogle Scholar
Pizarro, H., Izaguirre, I.Tell, G. 1996. Epilithic algae from a freshwater stream at Hope Bay, Antarctica. Antarctic Science, 8, 161167.CrossRefGoogle Scholar
Rochera, C., Justel, A., Fernández-Valiente, E., Bañón, M., Rico, E., Toro, M., Camacho, A.Quesada, A. 2010. Interannual meteorological variability and its effects on a lake from Maritime Antarctica. Polar Biology, 33, 16151628.CrossRefGoogle Scholar
Sabbe, K., Verleyen, E., Hodgson, D.A., Vanhoutte, K.Vyverman, W. 2003. Benthic diatom flora of freshwater and saline lakes in the Larsemann Hills and Rauer Islands, East Antarctica. Antarctic Science, 15, 227248.CrossRefGoogle Scholar
Souffreau, C., Vanormelingen, P., Verleyen, E., Sabbe, K.Vyverman, W. 2010. Tolerance of benthic diatoms from temperate aquatic and terrestrial habitats to experimental desiccation and temperature stress. Phycologia, 49, 309324.CrossRefGoogle Scholar
Stanish, L.F., Nemergut, D.R.McKnight, D.M. 2011. Hydrologic processes influence diatom community composition in Dry Valley streams. Journal of the North American Benthological Society, 30, 10571073.CrossRefGoogle Scholar
Stanley, E.H., Powers, S.M.Lottig, N.R. 2010. The evolving legacy of disturbance in stream ecology: concepts, contributions, and coming challenges. Journal of the North American Benthological Society, 29, 6783.CrossRefGoogle Scholar
Stevenson, R.J. 1983. Effects of current and conditions simulating autogenically changing microhabitats on benthic diatom inmigration. Ecology, 64, 15141524.CrossRefGoogle Scholar
ter Braak, C.J.F.Šmilauer, P. 1998. CANOCO reference manual and user's guide to Canoco for Windows. Software for canonical community ordination (version 4). Wageningen: Centre for Biometry, 351 pp.Google Scholar
Toro, M., Camacho, A., Rochera, C., Rico, E., Bañón, M., Fernández-Valiente, E., Marco, E., Justel, A., Avendaño, M., Ariosa, Y., Vincent, W.Quesada, A. 2007. Limnological characteristics of the freshwater ecosystems of Byers Peninsula, Livingston Island, in Maritime Antarctica. Polar Biology, 30, 635649.CrossRefGoogle Scholar
Van de Vijver, B.Mataloni, G. 2008. New and interesting species in the genus Luticola D.G. Mann (Bacillariophyta) from Deception Island (South Shetland Islands). Phycologia, 47, 451467.CrossRefGoogle Scholar
Van de Vijver, B.Zidarova, R. 2011. Five new taxa in the genus Pinnularia sectio Distantes (Bacillariophyta) from Livingston Island (South Shetland Islands). Phytotaxa, 24, 3950.CrossRefGoogle Scholar
Van de Vijver, B., Beyens, L.Lange-Bertalot, H. 2004. The genus Stauroneis in the Arctic and (sub-) Antarctic regions. Bibliotheca Diatomologica, 51, 1317.Google Scholar
Van de Vijver, B., Frenot, Y.Beyens, L. 2002. Freshwater diatoms from Ile de la Possesion (Crozet Archipelago, sub-Antarctica). Bibliotheca Diatomologica, 46, 1412.Google Scholar
Van de Vijver, B., Zidarova, R.de Haan, M. 2011a. Four new Luticola taxa (Bacillariophyta) from the South Shetland Islands and James Ross Island (Maritime Antarctic region). Nova Hedwigia, 92, 137158.CrossRefGoogle Scholar
Van de Vijver, B., Mataloni, G., Stanish, L.Spaulding, S.A. 2010a. New and interesting species of the genus Muelleria (Bacillariophyta) from the Antarctic region and South Africa. Phycologia, 49, 2241.CrossRefGoogle Scholar
Van de Vijver, B., Zidarova, R., Sterken, M., Verleyen, E., de Haan, M., Vyverman, W., Hinz, F.Sabbe, K. 2011b. Revision of the genus Navicula s.s. (Bacillariophyceae) in inland waters of the sub-Antarctic and Antarctic with the description of five new species. Phycologia, 50, 281297.CrossRefGoogle Scholar
Van de Vijver, B., Sterken, M., Vyverman, W., Mataloni, G., Nedbalová, L., Kopalová, K., Elster, J., Verleyen, E.Sabbe, K. 2010b. Four new non-marine diatom taxa from the sub-Antarctic and Antarctic regions. Diatom Research, 25, 431443.CrossRefGoogle Scholar
Zidarova, R., van de Vijver, B., Quesada, A.de Haan, M. 2010. Revision of the genus Hantzschia (Bacillariophyceae) on Livingston Island (South Shetland Islands, Southern Atlantic Ocean). Plant Ecology and Evolution, 143, 318333.CrossRefGoogle Scholar
Zidarova, R., van de Vijver, B., Mataloni, G., Kopalová, K.Nedbalova, L. 2009. Four new freshwater diatom species (Bacillariophyceae) from Antarctica. Cryptogamie Algologie, 30, 295310.Google Scholar