Hostname: page-component-cc8bf7c57-j4qg9 Total loading time: 0 Render date: 2024-12-10T14:18:06.906Z Has data issue: false hasContentIssue false

Parasite infection at the early farming community of Çatalhöyük

Published online by Cambridge University Press:  31 May 2019

Marissa L. Ledger
Affiliation:
Department of Archaeology, University of Cambridge, The Henry Wellcome Building, Fitzwilliam Street, Cambridge CB2 1QH, UK
Evilena Anastasiou
Affiliation:
Department of Archaeology, University of Cambridge, The Henry Wellcome Building, Fitzwilliam Street, Cambridge CB2 1QH, UK
Lisa-Marie Shillito
Affiliation:
School of History, Classics and Archaeology, Armstrong Building, Newcastle University, Newcastle NE1 7RU, UK
Helen Mackay
Affiliation:
School of History, Classics and Archaeology, Armstrong Building, Newcastle University, Newcastle NE1 7RU, UK
Ian D. Bull
Affiliation:
School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
Scott D. Haddow
Affiliation:
Department of Archaeology and Art History, College of Social Sciences and Humanities, Koç University, Fakültesi Rumelifeneri Yolu, Sarıyer, İstanbul 34450, Turkey
Christopher J. Knüsel
Affiliation:
UMR 5199 PACEA, University of Bordeaux, Bâtiment B8, Allée Geoffroy Saint Hilaire, CS 50023, Pessac Cedex 33615, France
Piers D. Mitchell*
Affiliation:
Department of Archaeology, University of Cambridge, The Henry Wellcome Building, Fitzwilliam Street, Cambridge CB2 1QH, UK
*
*Author for correspondence (Email: pdm39@cam.ac.uk)

Abstract

The early village at Çatalhöyük (7100–6150 BC) provides important evidence for the Neolithic and Chalcolithic people of central Anatolia. This article reports on the use of lipid biomarker analysis to identify human coprolites from midden deposits, and microscopy to analyse these coprolites and soil samples from human burials. Whipworm (Trichuris trichiura) eggs are identified in two coprolites, but the pelvic soil samples are negative for parasites. Çatalhöyük is one of the earliest Eurasian sites to undergo palaeoparasitological analysis to date. The results inform how intestinal parasitic infection changed as humans modified their subsistence strategies from hunting and gathering to settled farming.

Type
Research
Copyright
Copyright © Antiquity Publications Ltd, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anastasiou, E. 2015. Parasites in European populations from prehistory to the industrial revolution, in Mitchell, P.D. (ed.) Sanitation, latrines and intestinal parasites in past populations: 203–17. Farnham: Ashgate.Google Scholar
Anastasiou, E. & Mitchell, P.D.. 2013. Simplifying the process for extracting parasitic worm eggs from cesspool and latrine sediments: a trial comparing the efficacy of widely used techniques for disaggregation. International Journal of Paleopathology 3: 204207. https://doi.org/10.1016/j.ijpp.2013.04.004Google Scholar
Anastasiou, E., Papathanasiou, A., Schepartz, L.A. & Mitchell, P.D.. 2018. Infectious disease in the ancient Aegean: intestinal parasitic worms in the Neolithic to Roman period inhabitants of Kea, Greece. Journal of Archaeological Science Reports 17: 860–64. https://doi.org/10.1016/j.jasrep.2017.11.006Google Scholar
Armelagos, G.J. & Harper, K.N.. 2005. Disease globalization in the third epidemiological transition, in Guest, G. (ed.) Globalization, health, and the environment: an integrated perspective: 2733. Walnut Creek (CA): AltaMira.Google Scholar
Bayliss, A., Brock, F., Farid, S., Hodder, I., Southton, J. & Taylor, R.E.. 2015. Getting to the bottom of it all: a Bayesian approach to dating the start of Çatalhöyük. Journal of World Prehistory 28: 126. https://doi.org/10.1007/s10963-015-9083-7Google Scholar
Beer, R.J.S. 1976. The relationship between Trichuris trichiura (Linnaeus 1758) of man and Trichuris suis (Schrank 1788) of the pig. Research in Veterinary Science 20: 4754. https://doi.org/10.1016/S0034-5288(18)33478-7Google Scholar
Bethony, J., Brooker, S., Albonico, M., Geiger, S.M., Loukas, A., Diemert, D. & Hotez, P.J.. 2006. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. The Lancet 367: 1521–32. https://doi.org/10.1016/S0140-6736(06)68653-4Google Scholar
Bogaard, A., Charles, M., Livarda, A., Ergun, M., Filipović, D. & Jones, G.. 2013. The archaeobotany of mid–later Neolithic occupation levels at Çatalhöyük, in Hodder, I. (ed.) Humans and landscapes of Çatalhöyük: reports from the 2000–2008 seasons: 93128. Los Angeles (CA): Cotsen Institute of Archaeology.Google Scholar
Bogaard, A., Filipovic, D., Fairburn, A., Green, L., Stroud, E., Fuller, D. & Charles, M.. 2017. Agricultural innovation and resilience in a long-lived early farming community: the 1,500-year sequence at Neolithic to Early Chalcolithic Çatalhöyük, central Anatolia. Anatolian Studies 67: 128. https://doi.org/10.1017/S0066154617000072Google Scholar
Brown, T.A., Jones, M.K., Powell, W. & Allaby, R.G.. 2009. The complex origins of domesticated crops in the Fertile Crescent. Trends in Ecology & Evolution 24: 103109. https://doi.org/10.1016/j.tree.2008.09.008Google Scholar
Bull, I.D., Simpson, I.A., Van Bergen, P.F. & Evershed, R.P.. 1999. Muck ‘n’ molecules: organic geochemical methods for detecting ancient manuring. Antiquity 73: 8696. https://doi.org/10.1017/S0003598X0008786XGoogle Scholar
Bull, I., Lockheart, M., Elhmmali, M., Roberts, D. & Evershed, R.. 2002. The origin of faeces by means of biomarker detection. Environment International 27: 647–54. https://doi.org/10.1016/S0160-4120(01)00124-6Google Scholar
Cohen, M.N. & Armelagos, G.J.. 1984. Paleopathology at the origins of agriculture. Orlando (FL): Academic.Google Scholar
Dufour, B. & Bailly, M. Le. 2013. Testing new parasite egg extraction methods in paleoparasitology and an attempt at quantification. International Journal of Paleopathology 3: 199203. https://doi.org/10.1016/j.ijpp.2013.03.008Google Scholar
Garcia, L.S. 2016. Diagnostic medical parasitology (6th edition). Washington, D.C.: ASM. https://doi.org/10.1128/9781555819002Google Scholar
Harper, K. & Armelagos, G.. 2010. The changing disease-scape in the third epidemiological transition. International Journal of Environmental Research and Public Health 7: 675–97. https://doi.org/10.3390/ijerph7020675Google Scholar
Harter-Lailheugue, S., Mort, F. Le, Vigne, J.-D., Guilaine, J., Brun, A. Le & Bouchet, F.. 2005. Premiéres données parasitologiques sur les populations humaines précéramiques chypriotes (VIII e et VII e millénaires av. J.-C.). Paléorient 31: 4354. https://doi.org/10.3406/paleo.2005.5124Google Scholar
Hillson, S., Larsen, C.S., Boz, B., Pilloud, M.A., Sadvari, J.W., Agarwal, S.C., Glencross, B., Beauchesne, P., Pearson, J., Ruff, C.B., Garofalo, E.M., Hager, L.D. & Haddow, S.D.. 2013. The human remains I: interpreting community structure, health, and diet in Neolithic Çatalhöyük, in Hodder, I. (ed.) Humans and landscapes of Çatalhöyük: reports from the 2000–2008 seasons: 339–96. Los Angeles (CA): Cotsen Institute of Archaeology.Google Scholar
Hodder, I. 2014. Çatalhöyük: the leopard changes its spots. A summary of recent work. Anatolian Studies 64: 122. https://doi.org/10.1017/S0066154614000027Google Scholar
Jourdan, P.M., Lamberton, P.H., Fenwick, A. & Addiss, D.G.. 2018. Soil-transmitted helminth infections. The Lancet 391: 252–65. https://doi.org/10.1016/S0140-6736(17)31930-XGoogle Scholar
Larsen, C.S., Hillson, S.W., Boz, B., Pilloud, M.A., Sadvari, J.W., Agarwal, S.C., Glencross, B., Beauchesne, P., Pearson, J., Ruff, C.B., Garofalo, E.M., Hager, L.D., Haddow, S.D. & Knüsel, C.J.. 2015. Bioarchaeology of Neolithic Çatalhöyük: lives and lifestyles of an early farming society in transition. Journal of World Prehistory 28: 2768. https://doi.org/10.1007/s10963-015-9084-6Google Scholar
Ledger, M.L., Stock, F., Schwaiger, H., Knipping, M., Brückner, H., Ladstätter, S. & Mitchell, P.D.. 2018. Intestinal parasites from public and private latrines and the harbor canal in Roman period Ephesus, Turkey (1st c. BC to 6th c. AD). Journal of Archaeological Science Reports 21: 289–97. https://doi.org/10.1016/j.jasrep.2018.07.013Google Scholar
Maicher, C., Hoffmann, A., Côté, N.M.L., Pérez, A.P., Segui, M.S. & Le Bailly, M.. 2017. Paleoparasitological investigations on the Neolithic lakeside settlement of La Draga (Lake Banyoles, Spain). Holocene 27: 1659–68. https://doi.org/10.1177/0959683617702236Google Scholar
Matthews, W. 2005. Life-cycle and life-course of buildings, in Hodder, I. (ed.) Catalhoyuk perspectives: themes from the 1995–99 Seasons: 125–51. Cambridge: McDonald Institute for Archaeological Research.Google Scholar
Matthews, W., Shillito, L.-M., Elliot, S., Bull, I.D. & Williams, J.. 2014. Neolithic lifeways: microstratigraphic traces within houses, animal pens and settlements, in Whittle, A. & Bickle, P. (ed.) Early farmers: the view from archaeology and science: 251–79. Oxford: Oxford University Press. https://doi.org/10.5871/bacad/9780197265758.003.0014Google Scholar
McMahon, A. 2015. Waste management in early urban southern Mesopotamia, in Mitchell, P.D. (ed.) Sanitation, latrines and intestinal parasites in past populations: 1939. Farnham: Ashgate.Google Scholar
Mehlhorn, H. 2016. Animal parasites: diagnosis, treatment, prevention. Cham: Springer. https://doi.org/10.1007/978-3-319-46403-9Google Scholar
Mitchell, P.D. 2013. The origins of human parasites: exploring the evidence for endoparasitism throughout human evolution. International Journal of Paleopathology 3: 191–98. https://doi.org/10.1016/j.ijpp.2013.08.003Google Scholar
Mitchell, P.D. 2015a. Assessing the impact of sanitation upon health in early human populations from hunter-gatherers to ancient civilizations, using theoretical modelling, in Mitchell, P.D. (ed.) Sanitation, latrines and intestinal parasites in past populations: 517. Farnham: Ashgate.Google Scholar
Mitchell, P.D. 2015b. Human parasites in medieval Europe: lifestyle, sanitation and medical treatment. Advances in Parasitology 90: 389420. https://doi.org/10.1016/bs.apar.2015.05.001Google Scholar
Mitchell, P.D. 2017a. Sampling human remains for evidence of intestinal parasites, in Mitchell, P.D. & Brickley, M. (ed.) Updated guidelines to the standards for recording human remains: 5456. Reading: British Association for Biological Anthropology and Osteoarchaeology.Google Scholar
Mitchell, P.D. 2017b. Human parasites in the Roman world: health consequences of conquering an empire. Parasitology 144: 4858. https://doi.org/10.1017/S0031182015001651Google Scholar
Molleson, T., Andrews, P. & Boz, B.. 2005. Reconstruction of the Neolithic people of Çatalhöyük, in Hodder, I. (ed.) Inhabiting Çatalhöyük: reports from the 1995–99 seasons: 279300. Cambridge: McDonald Institute for Archaeological Research.Google Scholar
Morrow, J.J., Newby, J., Piombino-Mascali, D. & Reinhard, K.J.. 2016. Taphonomic considerations for the analysis of parasites in archaeological materials. International Journal of Paleopathology 13: 5664. https://doi.org/10.1016/j.ijpp.2016.01.005Google Scholar
Orton, D., Anvari, J., Gibson, C., Last, J., Bogaard, A., Rosenstock, E. & Biehl, P.. 2018. A tale of two tells: dating the Çatalhöyük West Mound. Antiquity 92: 620–39. https://doi.org/10.15184/aqy.2018.91Google Scholar
Pearson, J.A., Haddow, S.D., Hillson, S.W., Knüsel, C.J., Larsen, C.S. & Sadvari, J.W.. 2015. Stable carbon and nitrogen isotope analysis and dietary reconstruction through the life course at Neolithic Çatalhöyük, Turkey. Journal of Social Archaeology 15: 210–32. https://doi.org/10.1177/1469605315582983Google Scholar
Petroutsa, E.I. & Manolis, S.K.. 2010. Reconstructing Late Bronze Age diet in mainland Greece using stable isotope analysis. Journal of Archaeological Science 37: 614–20. https://doi.org/10.1016/j.jas.2009.10.026Google Scholar
Pokutta, D.A. 2017. Food, economy and social complexity in the Bronze Age world: a cross-cultural study. Musaica Archaelogica 1: 2341.Google Scholar
Prost, K., Birk, J.J., Lehndorff, E., Gerlach, R. & Amelung, W.. 2017. Steroid biomarkers revisited—improved source identification of faecal remains in archaeological soil material. PLoS ONE 12: e0164882. https://doi.org/10.1371/journal.pone.0164882Google Scholar
Reagan, R. & Taylor, J.. 2009. Building 80, Building 86, external spaces Sp.344, Sp.376, Sp.329, and Building 75, in Farid, S. (ed.) Çatalhöyük 2009 Archive Report: 1319. Çatalhöyük Research Project. Available at: http://www.catalhoyuk.com/archive_reports/2009 (accessed 5 April 2019).Google Scholar
Reinhard, K.J., Confalonieri, U.E., Herrmann, B., Ferreira, L.F. & Araújo, A.J.G.. 1986. Recovery of parasite remains from coprolites and latrines: aspects of paleoparasitological technique. Homo 37: 217–39.Google Scholar
Reinhard, K.J., Ferreira, L.F., Bouchet, F., Sianto, L., Dutra, J.M.F., Iniguez, A., Le Bailly, M., Fugassa, M., Pucu, E. & Araújo, A.. 2013. Food, parasites, and epidemiological transitions: a broad perspective. International Journal of Paleopathology 3: 150–57. https://doi.org/10.1016/j.ijpp.2013.05.003Google Scholar
Russell, N., Twiss, K.C., Orton, D.C. & Arzu Demirergi, G.. 2013. More on the Çatalhöyük mammal remains, in Hodder, I. (ed.) Humans and landscapes of Çatalhöyük: reports from the 2000–2008 seasons: 213–58. Los Angeles (CA): Cotsen Institute of Archaeology.Google Scholar
Ryan, P. 2008. Plant exploitation from household and landscape perspectives: the phytolith evidence, in Hodder, I. (ed.) Humans and landscapes of Çatalhöyük: reports from the 2000–2008 seasons: 163–90. Los Angeles (CA): Cotsen Institute of Archaeology.Google Scholar
Shillito, L.-M. & Matthews, W.. 2013. Geoarchaeological investigations of midden-formation processes in the early to late ceramic Neolithic levels at Çatalhöyük, Turkey ca. 8550–8370 cal BP. Geoarchaeology 28: 2549. https://doi.org/10.1002/gea.21427Google Scholar
Shillito, L.-M., Matthews, W., Almond, M.J. & Bull, I.D.. 2011a. The microstratigraphy of middens: capturing daily routine in rubbish at Neolithic Çatalhöyük, Turkey. Antiquity 85: 1024–38. https://doi.org/10.1017/S0003598X00068460Google Scholar
Shillito, L.-M., Bull, I.D., Matthews, W., Almond, M.J., Williams, J.M. & Evershed, R.P.. 2011b. Biomolecular and micromorphological analysis of suspected faecal deposits at Neolithic Çatalhöyük, Turkey. Journal of Archaeological Science 38: 1869–77. https://doi.org/10.1016/j.jas.2011.03.031Google Scholar
Shillito, L.-M., Matthews, W., Bull, I.D. & Williams, J.. 2013. Biomolecular investigations of faecal biomarkers at Sheik-e Abad and Jani, in Matthews, R., Matthews, W. & Mohammadifar, Y. (ed.) The earliest Neolithic of Iran: 2008 excavations at Sheikh-e Abad and Jani (Central Zagros Archaeological Project Volume 1): 105–15. Oxford: Oxbow.Google Scholar
Stephenson, L.S., Holland, C.V. & Cooper, E.S.. 2000. The public health significance of Trichuris trichiura. Parasitology 121: 7395. https://doi.org/10.1017/S0031182000006867Google Scholar
Van Neer, W., Gravendeel, R., Wouters, W. & Russell, N.. 2013. The exploitation of fish at Çatalhöyük, in Hodder, I. (ed.) Humans and landscapes of Çatalhöyük: reports from the 2000–2008 seasons: 317–27. Los Angeles (CA): Cotsen Institute of Archaeology.Google Scholar
Weller, P.F. & Nutman, T.B.. 2014. Intestinal nematode infections, in Kasper, D. (ed.) Harrison's principles of internal medicine (19th edition). New York: McGraw-Hill.Google Scholar
Williams, F., Arnold-Foster, T., Yeh, H.-Y., Ledger, M.L., Baeten, J., Poblome, J. & Mitchell, P.D.. 2017. Intestinal parasites from the 2nd–5th century AD latrine in the Roman baths at Sagalassos (Turkey). International Journal of Paleopathology 19: 3742. https://doi.org/10.1016/j.ijpp.2017.09.002Google Scholar