Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-09T15:17:03.916Z Has data issue: false hasContentIssue false

The structure of subtidal food webs in the northern Gulf of St. Lawrence, Canada, as revealed by the analysis of stable isotopes

Published online by Cambridge University Press:  29 April 2010

Marc-Olivier Nadon*
Affiliation:
Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149-1098, USA Département de Biologie & Québec-Océan, Université Laval, Québec, Québec, G1K 7P4, Canada
John H. Himmelman
Affiliation:
Département de Biologie & Québec-Océan, Université Laval, Québec, Québec, G1K 7P4, Canada
*
a Corresponding author: marc.nadon@gmail.com
Get access

Abstract

We analyzed stable isotopes of carbon and nitrogen to investigate the trophic structure of the subtidal food web around the Mingan Islands, northern Gulf of St. Lawrence, eastern Canada. All benthic consumers were enriched in 13C (mean δ13C of –17.1‰) compared to particulate organic matter (POM: –23.3‰). Nitrogen stable isotope ratios ranged from 6‰ to 14‰ and the organisms studied fell into three distinct trophic groups, primary producers, primary consumers (herbivores), and predators. The sea star Crossaster papposus and the sculpin Myoxocephalus scorpius, known to be top level predators, had slightly higher δ15N than other predators. Although the average isotope signature of the sea star Solaster endeca placed it among regular predators, the δ15N increased with sea star size and large individuals could be considered as top predators. The relatively small number of organisms located at intermediate trophic levels suggests a low level of omnivory in the Mingan Islands’ system, which contrasts with previously described benthic systems that exhibit a continuum between herbivores and predators. Low omnivory, in addition to low diversity, suggests that this ecosystem may be relatively unstable if exposed to natural and/or anthropogenic disturbances such as exploitation and climate change.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bérubé M., 1989, Partage des ressources entre le crabe tourteau, Cancer irroratus, et le crabe araignée, Hyas araneus, au nord du golfe du Saint-Laurent. M.Sc. Thesis. Université Laval, Canada. Département de biologie.
Caut, S., Angulo, E., Courchamp, F., 2009, Variation in discrimination factors (15N and 13C): the effect of diet isotopic values and applications for diet reconstruction. J. Appl. Ecol. 46, 443453.CrossRefGoogle Scholar
Deudero, S., Pinnegar, J.K., Polunin, N.V.C., Morey, G., Morales-Nin, B., 2004, Spatial variation and ontogenic shifts in the isotopic composition of Mediterranean littoral fishes. Mar. Biol. 145, 971981.CrossRefGoogle Scholar
Diehl, S., 1993, Relative consumer sizes and the strengths of direct and indirect interactions in omnivorous feeding relationships. Oikos 68, 151157.CrossRefGoogle Scholar
Drolet, D., Himmelman, J.H., Rochette, R., 2004, Use of refuges by the ophiuroid Ophiopholis aculeata: contrasting effects of substratum complexity on predation risk from two predators. Mar. Ecol. Prog. Ser. 284, 173183.CrossRefGoogle Scholar
Dunton, K.H., 2001, δ15N and δ13C measurements of Antarctic peninsula fauna: Trophic relationships and assimilation of benthic seaweeds. Am. Zool. 41, 99112.Google Scholar
Dutil, C., Gaymer, C.F., Himmelman, J.H., 2004, Prey selection and predatory impact of four major sea stars on a soft bottom subtidal community. J. Exp. Mar. Biol. Ecol. 313, 353374.Google Scholar
Emmerson, M., Yearsley, J.M., 2004, Weak interactions, omnivory and emergent food-web properties. Proc. R. Soc. Lond. B Biol. Sci. 271, 397405.CrossRefGoogle ScholarPubMed
Fredriksen, S., 2003, Food web studies in a Norwegian kelp forest based on stable isotope (δ13C and δ15N) analysis. Mar. Ecol. Prog. Ser. 260, 7181.CrossRefGoogle Scholar
Fry, B., 1988, Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnol. Oceanogr. 33, 11821190.CrossRefGoogle Scholar
Gagnon, P., Himmelman, J.H., Johnson, L.E., 2004, Temporal variation in community interfaces: kelp-bed boundary dynamics adjacent to persistent urchin barrens. Mar. Biol. 144, 11911203.CrossRefGoogle Scholar
Gaymer, C.F., Himmelman, J.H., Johnson, L.E., 2001, Distribution and feeding ecology of the seastars Leptasterias polaris and Asterias vulgaris in the northern Gulf of St. Lawrence, Canada. J. Mar. Biol. Assoc. UK 81, 827843.CrossRefGoogle Scholar
Hardy, C.M., Krull, E.S., Hartley, D.M., Oliver, R.L., 2010, Carbon source accounting for fish using combined DNA and stable isotope analyses in a regulated lowland river weir pool. Mol. Ecol. 19, 197212.CrossRefGoogle Scholar
Himmelman, J.H., 1991, Diving observations of subtidal communities in the northern Gulf of St. Lawrence. Can. Spec. Publ. Fish. Aquat. Sci. 113, 319332.Google Scholar
Himmelman, J.H., Cardinal, A., Bourget, E., 1983, Community development following removal of urchins, Strongylocentrotus droebachiensis, from the rocky subtidal zone of the St. Lawrence Estuary, Eastern Canada. Oecologia 59, 2739.CrossRefGoogle Scholar
Himmelman, J.H., Dutil, C., 1991, Distribution, population structure and feeding of subtidal seastars in the northern Gulf of St. Lawrence. Mar. Ecol. Prog. Ser. 76, 6172.CrossRefGoogle Scholar
Himmelman, J.H., Hamel, J.-R., 1993, Diet, behavior and reproduction of the whelk Buccinum undatum in the northern Gulf of St. Lawrence, eastern Canada. Mar. Biol. 116, 423430.CrossRefGoogle Scholar
Himmelman, J.H., Steele, D.H., 1971, Foods and predators of the green sea urchin Strongylocentrotus droebachiensis in Newfoundland waters. Mar. Biol. 9, 315322.CrossRefGoogle Scholar
Hobson, K.A., Welch, H.E., 1992, Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Mar. Ecol. Prog. Ser. 84, 918.CrossRefGoogle Scholar
Jenkins, S.R., Arenas, F., Arrontes, J., Bussell, J., Castro, J., Coleman, R.A., Hawkins, S.J., Kay, S., Martinez, B., Oliveros, J., Roberts, M.F., Sousa, S., Thompson, R.C., Hartnoll, R.G., 2001, European-scale analysis of seasonal variability in limpet grazing activity and microalgal abundance. Mar. Ecol. Prog. Ser. 211, 193203.CrossRefGoogle Scholar
Kaehler, S., Pakhomov, E.A., McQuaid, C.D., 2000, Trophic structure of the marine food web at the Prince Edward Islands (Southern Ocean) determined by δ13C and δ15N analysis. Mar. Ecol. Prog. Ser. 208, 1320.CrossRefGoogle Scholar
Latyshev, N.A., Khardin, A.S., Kasyanov, S.P., Ivanova, M.B., 2004, A study on the feeding ecology of chitons using analysis of gut contents and fatty acid markers. J. Molluscan Stud. 70, 225230.CrossRefGoogle Scholar
Lesage, V., Hammill, M.O., Kovacs, K.M., 2001, Marine mammals and the community structure of the Estuary and Gulf of St Lawrence, Canada: evidence from stable isotope analysis. Mar. Ecol. Prog. Ser. 210, 203221.CrossRefGoogle Scholar
Martineau, C., Vincent, W.F., Frenette, J.-J., Dodson, J.J., 2004, Primary consumers and particulate organic matter: Isotopic evidence of strong selectivity in the estuarine transition zone. Limnol. Oceanogr. 49, 16791686.CrossRefGoogle Scholar
McCann, K., Hastings, A., 1997, Re-evaluating the omnivory-stability relationship in food webs. Proc. R. Soc. Lond. B Biol. Sci. 264, 12491254.CrossRefGoogle Scholar
McCann, K.S., 2000, The diversity-stability debate. Nature 405, 228233.CrossRefGoogle ScholarPubMed
McCutchan, J.H., Lewis, W.M., Kendall, C., McGrath, C.C., 2003, Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378390.CrossRefGoogle Scholar
Minagawa, M., Wada, E., 1984, Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 11351140.CrossRefGoogle Scholar
Nadon, M.-O., Himmelman, J.H., 2006, Stable isotopes in subtidal food webs: Have enriched carbon ratios in benthic consumers been misinterpreted? Limnol. Oceanogr. 51, 28282836.Google Scholar
Namba, T., Tanabe, K., Maeda, N., 2008, Omnivory and stability of food webs. Ecol. complex. 5, 7385.CrossRefGoogle Scholar
Perron, F.E., 1978, Seasonal burrowing behavior and ecology of Aporrhais-occidentalis (Gastropoda Strombacea). Biol. Bull. 154, 463471.CrossRefGoogle Scholar
Pimm S.L., 1982, Food webs. London, Chapman & Hall. Population and community biology series.
Riera, P., Richard, P., 1997, Temporal variation of δ13C in particulate organic matter and oyster Crassostrea gigas in Marennes-Oléron Bay (France): effect of freshwater inflow. Mar. Ecol. Prog. Ser. 147, 105115.CrossRefGoogle Scholar
Rochette, R., Morissette, S., Himmelman, J.H., 1995, A flexible response to a major predator provides the whelk Buccinum undatum L. with nutritional gains. J. Exp. Mar. Biol. Ecol. 185, 167180.CrossRefGoogle Scholar
Rodriguez, S.R., 2003, Consumption of drift kelp by intertidal populations of the sea urchin Tetrapygus niger on the central Chilean coast: possible consequences at different ecological levels. Mar. Ecol. Prog. Ser. 251, 141151.CrossRefGoogle Scholar
Schaal, G., Riera, P., Leroux, C., Grall, J., 2010, A seasonal stable isotope survey of the food web associated to a peri-urban rocky shore. Mar. Biol. 157, 283294.CrossRefGoogle Scholar
Sebens, K.P., Koehl, M.A.R., 1984, Predation on zooplankton by the benthic anthozoans Alcyonium siderium (Alcyonacea) and Metridium senile (Actiniaria) in the New England subtidal. Mar. Biol. 81, 255271.CrossRefGoogle Scholar
Simenstad, C.A., Duggins, D.O., Quay, P.D., 1993, High turnover of inorganic carbon in kelp habitats as a cause of δ13C variability in marine food webs. Mar. Biol. 116, 147160.CrossRefGoogle Scholar
Stephenson, R.L., Tan, F.C., Mann, K.H., 1984, Stable carbon isotope variability in marine macrophytes and its implications for food web studies. Mar. Biol. 81, 223230.CrossRefGoogle Scholar
Stephenson, R.L., Tan, F.C., Mann, K.H., 1986, Use of stable carbon isotope ratios to compare plant material and potential consumers in a seagrass bed and a kelp bed in Nova Scotia, Canada. Mar. Ecol. Prog. Ser. 30, 17.CrossRefGoogle Scholar
Tan, F.C., Strain, P.M., 1979, Carbon isotope ratios of particulate organic matter in the Gulf of St. Lawrence. J. Fish. Res. Board Can. 36, 678682.CrossRefGoogle Scholar
Tanabe, K., Namba, T., 2005, Omnivory creates chaos in simple food web models. Ecology 86, 34113414.CrossRefGoogle Scholar
Thomas B., 1988, L’utilisation des ressources infralittorales par une communauté de poissons démersaux. M.Sc. Laval Univ. Département de biologie.
Tieszen, L.L., Boutton, T.W., Tesdahl, K.G., Slade, N.A., 1983, Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for δ13C analysis of diet. Oecologia 57, 3237.CrossRefGoogle Scholar
van Oevelen, D., Soetaert, K., Franco, M.A., Moodley, L., van Ijzerloo, L., Vincx, M., Vanaverbeke, J., 2009, Organic matter input and processing in two contrasting North Sea sediments: insights from stable isotope and biomass data. Mar. Ecol. Prog. Ser. 380, 1932.CrossRefGoogle Scholar
Vander Zanden, M.J., Rasmussen, J.B., 2001, Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46, 20612066.CrossRefGoogle Scholar
Vanderklift, M.A., Ponsard, S., 2003, Sources of variation in consumer-diet delta N-15 enrichment: a meta-analysis. Oecologia 136, 169182.CrossRefGoogle Scholar
Yatsuya, K., Nakahara, H., 2004, Diet and stable isotope ratios of gut contents and gonad of the sea urchin Anthocidaris crassispina (A. Agassiz) in two different adjacent habitats, the Sargassum area and Corallina area. Fish. Sci. 70, 285292.CrossRefGoogle Scholar