Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-01T09:39:24.130Z Has data issue: false hasContentIssue false

Coordinate transformations in postural control

Published online by Cambridge University Press:  19 May 2011

Francesco Lacquaniti
Affiliation:
Istituto di Fisiologia dei Centri Nervosi, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milan, Italy, Electronic mail: ifcncnr@imisiam.bitnet

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abend, W., Bizzi, E. & Morasso, P. (1982) Human arm trajectory formation. Brain 105:331–48. [JG]CrossRefGoogle ScholarPubMed
Adams, R. W., Gandevia, S. C. & Skuse, N. F. (1990) The distribution of muscular weakness in upper motoneurone lesions affecting the lower limb. Brain 113:1459–76. [SCG]CrossRefGoogle ScholarPubMed
Alexander, G. E. & Crutcher, M. D. (1990a) Preparation for movement: Neural representations of intended direction in three motor areas of the monkey. Journal of Neurophysiology 64:133–50. [aMF]CrossRefGoogle ScholarPubMed
Alexander, G. E. & Crutcher, M. D. (1990b) Neural representations of the target (goal) of visually guided arm movements in three motor areas of the monkey. Journal of Neurophysiology 64:164–78. [aMF, GEA]CrossRefGoogle ScholarPubMed
Andersen, R. A. (1987) Inferior parietal lobe function in spatial perception and visuomotor integration. In: Handbook of physiology, section I: The nervous system, vol. 5, part 2, ed. Plum, F. & Mountcastle, V. B.. American Physiological Society. [aMF]Google Scholar
Andersen, R. A. (1989) Visual and eye movement functions of the posterior parietal cortex. Annual Review of Neuroscience 12:377403. [aMF]CrossRefGoogle ScholarPubMed
Andersen, R. A., Bracewell, R. M., Barash, S., Gnadt, J. W. & Fogassi, L. (1990) Eye position effects of visual, memory and saccade-related activity in areas LIP and 7a of macaque. Journal of Neuroscience 10:1176–96. [RMB]CrossRefGoogle ScholarPubMed
Andersen, R. A., Essick, G. K. & Siegel, R. M. (1985) Encoding of spatial location by posterior parietal neurons. Science 230:456–58. [aMF, GEA]CrossRefGoogle ScholarPubMed
Andersen, R. A. & Mountcastle, V. B. (1983) The influence of the angle of gaze upon the excitability of posterior parietal neurons. Journal of Neuroscience 3:532–48. [YB]CrossRefGoogle Scholar
Andersen, R. A. & Zipser, D. (1988) The role of the posterior parietal cortex in coordinate transformations for visual-motor integration. Canadian Journal of Physiology and Pharmacology 66:488501. [arMF, YB]CrossRefGoogle ScholarPubMed
Arbib, M. A. (1981) Perceptual structures and distributed motor control. In: Handbook of physiology – the nervous system II. Motor control, ed. Brooks, V. B.. American Physiological Society. [MAA]Google Scholar
Arbib, M. A. (1985) Schemas for the temporal organization of behaviour. Human Neurobiology 4:6372. [JG]Google ScholarPubMed
Arbib, M. A. (1991) Schema theory. In: The encyclopedia of artificial intelligence, 2nd ed., ed. Shapiro, S.. Wiley-Interscience (in press). [MAA]Google Scholar
Arbib, M. A. & Amari, S. (1985) Sensori-motor transformations in the brain (with a critique of the tensor theory of cerebellum). Journal of Theoretical Biology 112:123–55. [MAA]CrossRefGoogle ScholarPubMed
Arbib, M. A. & Cobas, A. (1991) Prey-catching and predator avoidance 1: Maps and schemas. In: Visual structures and integrated functions, Research notes in neural computing, ed. Arbib, M. A. & J.-P., Ewert. Springer-Verlag. [MAA]CrossRefGoogle Scholar
Barash, S., Bracewell, R. M., Fogassi, L., Gnadt, J. W. & Andersen, R. A. (1991a) Saccade-related activity in the lateral intraparietal area (LIP). I. Temporal properties; comparison to area 7a. Journal of Neurophysiology 66:10951108. [RMB]CrossRefGoogle ScholarPubMed
Barash, S., Bracewell, R. M., Fogassi, L., Gnadt, J. W. & Andersen, R. A. (1991b) Saccade-related activity in the lateral intraparietal area (LIP). II. Spatial properties. Journal of Neurophysiology 66:1109–24. [RMB]CrossRefGoogle ScholarPubMed
Bard, C., Fleury, M. & Paillard, J. (1990) Different patterns in aiming accuracy for head-movers and non-head-movers. Journal of Human Movements Studies 18:3748. [JB]Google Scholar
Becker, W. & Fuchs, A. F. (1969) Further properties of the human saccadic system: Eye movements and correction saccades with and without visual fixation points. Vision Research 9:1247–58. [MAG]CrossRefGoogle ScholarPubMed
Ben-Israel, A. & Greville, T. N. E. (1974) Generalized inverses: Theory and applications. John Wiley. [MAA]Google Scholar
Biguer, B., Jearmerod, M. & Prablanc, C. (1982) The coordination of eye, head and arm movements during reaching at a single visual target. Experimental Brain Research 46:301–04. [JB]CrossRefGoogle Scholar
Bizzi, E., Chapple, W. & Hogan, N. (1982) Mechanical properties of muscles: Implications for motor control. Trends in Neuroscience 5:395–98. [MK]CrossRefGoogle Scholar
Boff, K. R., Kaufman, L. & Thomas, J. P. (1986) Handbook of perception and human performance. John Wiley. [VH]Google Scholar
Bookstein, F. L. (1981) Coordinate systems and morphogenesis. In: Morphogenesis and pattern formation, ed. Connelly, T. G., Brinkley, L. & Carlson, B.. Raven Press. [FLB]Google Scholar
Bourbon, W. T., Copeland, K. E., Dyer, V. T., Harman, W. K. & Mosley, B. L. (1990) On the accuracy and reliability of predictions by controlsystem theory. Perceptual and Motor Skills 71:1331–38. [WTP]CrossRefGoogle ScholarPubMed
Bowditch, H. P. & Southard, W. F. (1880) A comparison of sight and touch. Journal of Physiology 3:232–45. [DHH]CrossRefGoogle Scholar
Bracewell, R. M., Barash, S. & Andersen, R. A. (1990) A neural analogue in the lateral intraparietal cortex (LIP) of the end-point up-shift of memoryguided saccades made in the dark. Society for Neuroscience Abstracts 16:622. [RMB]Google Scholar
Braitenberg, V. (1988) Some types of movements. In: Artificial life: SFI studies in the sciences of complexity, ed. Langton, C.. Addison-Wesley. [GM]Google Scholar
Bridgeman, B. (1989) Separate visual representations for perception and for visually guided behavior. Spatial Display & Spatial Instruments. NASA. [JB]Google Scholar
Bridgeman, B., Lewis, S., Heit, G. & Nagle, M. (1979) Relation between cognitive and motor-oriented systems of visual position perception. Journal of Experimental Psychology: Human Perception & Performance 5:692700. [JB]Google ScholarPubMed
Brown, J. S., Knauft, E. B. & Rosenbaum, G. (1948) The accuracy of positioning reactions as a function of their direction and extent. American Journal of Psychology 61:167–82. [DHH, LLEM]CrossRefGoogle ScholarPubMed
Brüwer, M. & Cruse, H. (1990) A network model for the control of the movement of a redundant manipulator. Biological Cybernetics 62:549–55. [HC]CrossRefGoogle ScholarPubMed
Bruynincks, H. (1991) Some invariance problems in robotics. Report 91R4, Department of Mechanical Engineering, Universiteit Leuven, Belgium. [VH]Google Scholar
Buchanan, T. S., Rovai, G. P. & Rymer, W. Z. (1989) Strategies for muscle activation during isometric torque generation at the human elbow. Journal of Neurophysiology 62:1201–12. [aMF]CrossRefGoogle ScholarPubMed
Buchanan, T. S., Almdale, D. P. J., Lewis, J. L. & Rymer, W. Z. (1986) Characteristics of synergic relations during isometric contractions of human elbow muscles. Journal of Neurophysiology 56:1225–41. [aMF]CrossRefGoogle ScholarPubMed
Buck, L. (1976) The boundary distance effects on overshooting. Journal of Motor Behavior 8:3541. [JG]CrossRefGoogle ScholarPubMed
Bullock, D. & Grossberg, S. (1988) Neural dynamics of planned arm movements: Emergent invariants and speed-accuracy properties during trajectory formation. Psychological Review 95:4990. [aMF]CrossRefGoogle ScholarPubMed
Burnod, Y., Caminiti, R., Johnson, P. B., Granguillaume, P. & Otto, I. (1990) Model of visuomotor transformations performed by the cerebral cortex to command arm movements at visual targets in the 3-D space. In: Advanced neural computers, ed. Eckmiller, R.. North-Holland. [YB]Google Scholar
Büttner, U. & Büttner-Ennever, J. A. (1988) Present concepts of oculomotor organization. In: Neuroanatomy of the oculomotor system. Reviews of oculomotor research, vol. 2, ed. Büttner-Ennever, J. A.. Elsevier. [aMF]Google Scholar
Caminiti, R., Johnson, P. B., Galli, C., Ferraina, S. & Burnod, Y. (1991) Making arm movements within different parts of space: The premotor and motor cortical representation of a coordinate system for reaching to visual targets. Journal of Neuroscience 11:1182–97. [RMB, YB]CrossRefGoogle ScholarPubMed
Caminiti, R., Johnson, P. B. & Urbano, A. (1990) Making arm movements within different parts of space: Dynamic aspects in the primate motor cortex. Journal of Neuroscience 10:2039–58. [RMB, YB]CrossRefGoogle ScholarPubMed
Carpenter, R. H. S. (1988) Movements of the eyes, 2nd ed.Pion. [RMB]Google Scholar
Carr, J. N., Louca, D. & Grobstein, P. (1991) Directed movement in the frog: Explorations using back propagation networks. Society for Neuroscience Abstracts 17:1578. [PG]Google Scholar
Cobas, A. & Arbib, M. A. (1991) Prey-catching and predator avoidance 2: Modeling the medullary hemifield deficit. In: Visual structures and integrated functions. Research notes in neural computing, ed. Arbib, M. A. & Ewert, J.-P.. Springer-Verlag. [MAA]Google Scholar
Colebatch, J. G. & Gandevia, S. C. (1989) The distribution of muscular weakness in upper motor neuron lesions affecting the arm. Brain 112:749–63. [SCG]CrossRefGoogle ScholarPubMed
Collewijn, H. & Erkelens, C. J. (1990) Binocular eye movements and the perception of depth. In: Eye movements and their role in visual and cognitive processes, ed. Kowler, E.. Elsevier. [YB]Google Scholar
Cooke, J. D., Brown, S., Forget, R. & Lamarre, Y. (1985) Initial agonist burst duration changes with movement amplitude in a deafferented patient. Experimental Brain Research 60:184–87. [JB]CrossRefGoogle Scholar
Cordo, P. J. & Flanders, M. (1989) Sensory control of target acquisition. Trends in Neurosciences 12:110–16. [aMF]CrossRefGoogle ScholarPubMed
Cruse, H. (1986) Constraints for joint angle control of the human arm. Biological Cybernetics 54:125–32. [HC]CrossRefGoogle Scholar
Cruse, H. & Brüwer, M. (1987) The human arm as a redundant manipulator: The control of path and joint angles. Biological Cybernetics 57:137–44. [rMF, HC, ZH]CrossRefGoogle ScholarPubMed
Crutcher, M. D. & Alexander, G. E. (1990) Movement-related neuronal activity selectively coding either direction or muscle pattern in three motor areas of the monkey. Journal of Neurophysiology 64:151–63. [aMF]CrossRefGoogle ScholarPubMed
de Graaf, J. B., Sittig, A. C. & Denier van der Gon, J. J. (1991) Misdirections in slow goal-directed arm movements and pointer-setting tasks. Experimental Brain Research 84:434–38. [CJW]CrossRefGoogle ScholarPubMed
Delabarre, E. B. (1891) Über Bewegungsempfindungen [On sensitivity to movement]. Doctoral dissertation, University of Freiburg, Freiburg, Germany. Buchdruckerei Hch. Epstein. [CJW]Google Scholar
Draper, N. & Smith, H. (1981) Applied regression analysis, 2nd ed.John Wiley. [FLB]Google Scholar
Dum, R. P. & Strick, P. L. (1991) The origin of corticospinal projections from the premotor areas in the frontal lobe. Journal of Neuroscience 11:667–89. [YB]CrossRefGoogle ScholarPubMed
Ezure, K. & Graf, W. (1984) A quantitative analysis of the spatial organization of the vestibulo-ocular reflexes in lateral- and frontal-eyed animals. I. Orientation of semicircular canals and extraocular muscles. Neuroscience 12:8594. [aMF]CrossRefGoogle ScholarPubMed
Favilla, M., Gordon, J., Ghilardi, M. F. & Ghez, C. (1990a) Discrete and continuous processes in the programming of extent and direction in multijoint arm movements. Society for Neuroscience Abstracts 16:1089. [aMF, RMB, JG]Google Scholar
Favilla, M., Gordon, J., Hening, W. & Ghez, C. (1990b) Trajectory control in targeted force impulses VII. Independent setting of amplitude and direction in response preparation. Experimental Brain Research 79:530–38. [aMF, RMB, JG]CrossRefGoogle ScholarPubMed
Favilla, M., Hening, W. & Ghez, C. (1989) Trajectory control in targeted force impulses. VI. Independent specification of response amplitude and direction. Experimental Brain Research 75:280–94. [JG]CrossRefGoogle ScholarPubMed
Feldman, A. G. (1986) Once more on the equilibrium-point hypothesis (λ model) for motor control. Journal of Motor Behavior 18:1754. [MK]CrossRefGoogle ScholarPubMed
Ferrel, W. R. & Smith, A. (1989) The effect of loading on position sense at the proximal interphalangeal joint of the human index finger. Journal of Physiology (London) 418:145–61. [ZH]CrossRefGoogle Scholar
Fitts, P. M. & Seeger, C. M. (1953) S-R compatibility: Spatial characteristic of stimulus and response codes. Journal of Experimental Psychology 46:199210. [LLEM]CrossRefGoogle ScholarPubMed
Flanders, M. & Soechting, J. F. (1990) Parcellation of sensorimotor transformations for arm movements. Journal of Neuroscience 10:2420–27. [arMF]CrossRefGoogle ScholarPubMed
Foley, J. M. & Held, R. (1972) Visually directed pointing as a function of target distance, direction and available cues. Perception and Psychophysics 12(3):263–68. [DJB, MK]CrossRefGoogle Scholar
Fookson, O., Berkinblit, M., Adamovich, S. & Poizner, H. (1991) Overshoot in three-dimensional pointing movements. Society for Neuroscience Abstracts 17:1387. [MB]Google Scholar
Forget, R. & Lamarre, Y. (1987) Rapid elbow flexion in the absence of proprioceptive and cutaneous feedback. Human Neurobiology 6:2737. [JB]Google ScholarPubMed
Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. (1989) Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. Journal of Neurophysiology 61:331–49. [aMF, RMB]CrossRefGoogle ScholarPubMed
Gandevia, S. C. (1985) Illusory movements produced by electrical stimulation of low-threshold muscle afferents from the hand. Brain 108:965–81. [SCG]CrossRefGoogle ScholarPubMed
Gandevia, S. C. & Mahutte, C. K. (1982) Theoretical requirements for the interpretation of signals of intramuscular tension. Journal of Theoretical Biology 97:141–53. [SCG]CrossRefGoogle ScholarPubMed
Georgopoulos, A. P. (1986) On reaching. Annual Review of Neuroscience 9:147–70. [rMF, JG, LLEM]CrossRefGoogle ScholarPubMed
Georgopoulos, A. P., Caminiti, R., Kalaska, J. F. & Massey, J. T. (1983) Spatial coding of movement: A hypothesis concerning the coding of movement direction by motor cortical populations. Experimental Brain Research (Supplement) 7:327–36. [aMF, YB]CrossRefGoogle Scholar
Georgopoulos, A. P., Kalaska, J. F., Caminiti, R. & Massey, J. T. (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. Journal of Neuroscience 2:1527–37. [YB]CrossRefGoogle ScholarPubMed
Georgopoulos, A. P., Kalaska, J. F. & Massey, J. T. (1981) Spatial trajectories and reaction times of aimed movements: Effects of practice, uncertainty, and change in target location. Journal of Neurophysiology 46:725–43. [JG, LLEM]CrossRefGoogle ScholarPubMed
Georgopoulos, A. P., Kettner, R. E. & Schwartz, A. B. (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding the direction by a neuronal population. Journal of Neuroscience 8:2928–37. [aMF, JRB]CrossRefGoogle ScholarPubMed
Georgopoulos, A. P. & Massey, J. T. (1988) Cognitive spatial-motor processes. 2. Information transmitted by the direction of two-dimensional arm movements and by neuronal populations in primate motor cortex and area 5. Experimental Brain Research 69:315–26. [aMF]Google ScholarPubMed
Georgopoulos, A. P., Schwartz, A. B. & Kettner, R. E. (1986) Neuronal population coding of movement direction. Science 233:1416–19. [YB]CrossRefGoogle ScholarPubMed
Ghez, C., Gordon, J., Ghilardi, M. F., Christakos, C. N. & Cooper, S. E. (1991) Roles of proprioceptive input in the programming of arm trajectories. In: Cold Spring Harbor Symposia in Quantitative Biology 55:837–47. [rMF, JG, ZH]CrossRefGoogle Scholar
Ghez, C., Hening, W. & Favilla, M. (1989) Gradual specification of response amplitude in human tracking performance. Brain, Behavior and Evolution 33:6974. [DJB]CrossRefGoogle ScholarPubMed
Ghilardi, M. F., Gordon, J. & Ghez, C. (1991) Systematic directional errors in planar arm movements are reduced by the vision of the arm. Society for Neuroscience Abstracts 17:1388. [JG]Google Scholar
Giszter, S. F., McIntyre, J. & Bizzi, E. (1989) Kinematic strategies and sensorimotor transformations in the wiping movements of frogs. Journal of Neurophysiology 62:750–67. [rMF]CrossRefGoogle ScholarPubMed
Gnadt, J. W. & Andersen, R. A. (1988) Memory-related motor planning activity in posterior parietal cortex of macaque. Experimental Brain Research 70:216–20. [RMB]CrossRefGoogle ScholarPubMed
Gnadt, J. W., Bracewell, R. M. & Andersen, R. A. (1991) Sensorimotor transformation during eye movements to remembered visual targets. Vision Research 31:693715. [rMF, RMB, MAG]CrossRefGoogle ScholarPubMed
Gnadt, J. W. & Mays, L. E. (1989) Posterior parietal cortex, the oculomotor near response and spatial coding in 3-D space. Society for Neuroscience Abstracts 15:786. [RMB]Google Scholar
Goodale, M. A. & Milner, A. D. (1992) Separate visual pathways for perception and action. Trends in Neuroscience (in press). [MAG]CrossRefGoogle Scholar
Goodale, M. A., Milner, A. D., Jakobson, L. S. & Carey, D. P. (1991) A neurological dissociation between perceiving objects and grasping them. Nature 349:154–56. [MAG]CrossRefGoogle Scholar
Goodwin, G. M., McCloskey, D. I. & Matthews, P. B. C. (1972) The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movements and by the effects of paralysing joint afferents. Brain 95:705–48. [SCG]CrossRefGoogle ScholarPubMed
Gordon, J. & Ghez, C. (1987) Trajectory control in targeted force impulses. III. Compensatory adjustments for initial errors. Experimental Brain Research 67:253–69. [JG]CrossRefGoogle ScholarPubMed
Gordon, J. & Ghez, C. (1989) Independence of direction and amplitude errors in planar arm movements. Society for Neuroscience Abstracts 15:50. [JG]Google Scholar
Gordon, J., Ghilardi, M. F. & Ghez, C. (1990) Deafferented subjects fail to compensate for workspace anisotropies in 2-dimensional arm movements. Society for Neuroscience Abstracts 16:1089. [JG]Google Scholar
Gordon, J., Iyer, M. & Ghez, C. (1987) Impairment of motor programming and trajectory control in the deafferented patient. Society for Neuroscience Abstracts 13:352. [JG]Google Scholar
Gottlieb, G. L., Corcos, D. M. & Agarwal, G. C. (1989) Strategies for the control of voluntary movements with one mechanical degree of freedom. Behavioral and Brain Sciences 12:189250. [DHH]CrossRefGoogle Scholar
Gowers, W. R. (1887) Lectures on the diagnosis of diseases of the brain, 2nd ed.J. & A. Churchill. [SCG]Google Scholar
Greene, P. H. (1972) Problems of organization of motor systems. In: Progress in theoretical biology, ed. Rosen, R. & Snell, F. M.. Academic Press. [JG]Google Scholar
Grobstein, P. (1987) The nervous system/behavior interface: Levels of organization and levels of approach. Behavioral & Brain Sciences 10:380–81. [PG]CrossRefGoogle Scholar
Grobstein, P. (1988a) Between the retinotectal projection and directed movement: Topography of a sensorimotor interface. Brain, Behavior and Evolution 31:3448. [aMF, PG]CrossRefGoogle ScholarPubMed
Grobstein, P. (1988b) From the head to the heart: Some thoughts on similarities between brain function and morphogenesis, and on their significance for research methodology and biological theory. Experientia 44:961–71. [PG]CrossRefGoogle Scholar
Grobstein, P. (1989) Organization in the sensorimotor interface: A case study with increased resolution. In: Visuomotor coordination: Amphibians, comparisons, models, and robots, ed. Ewert, J.-P. & Arbib, M. A.. Plenum. [PG]Google Scholar
Grobstein, P. (1990a) Strategies for analyzing complex organization in the nervous system. I. Lesion experiments, the old rediscovered. In: Computational neuroscience, ed. Schwartz, E.. MIT Press. [PG]Google Scholar
Grobstein, P. (1990b) Strategies for analyzing complex organization in the nervous system. II. A case study: Directed movement and spatial representation in the frog. In: Computational neuroscience, ed. Schwartz, E.. MIT Press. [PG]Google Scholar
Grobstein, P. (1991a) Directed movement in the frog: A closer look at a central representation of spatial location. In: Visual structures and integrated functions, research notes in neural computing, ed. Arbib, M. A. & Ewert, J.-P.. Springer-Verlag. (in press). [PG]Google Scholar
Grobstein, P. (1991b) Directed movement in the frog: Motor choice, spatial representation, free will? In: Neurobiology of motor programme selection: New approaches to mechanisms of behavioral choice, ed. Kien, J., McCrohan, C. & Winlow, B.. Manchester University Press. [PG]Google Scholar
Grobstein, P., Comer, C. & Kostyk, S. K. (1983) Frog prey capture behavior: Between sensory maps and directed motor output. In: Advances in vertebrate neuroethology, ed. Ewert, J.-P., Capranica, R. R. & Ingle, D. J.. Plenum Press. [MAA]Google Scholar
Grobstein, P., Crowley, K. & Spiro, J. (1988) Neuronal organization for directed movement in the frog: Similarities in visual and tactile prey orienting. Society for Neuroscience Abstracts 14:1236. [PG]Google Scholar
Grobstein, P., Meyer, J. & Egnor, R. (1990) Directed movement in the frog: Motor equivalence, multi-dimensionality, internal feedback? Society for Neuroscience Abstracts 16:117. [PG]Google Scholar
Grobstein, P. & Staradub, V. (1989) Frog orienting behavior: The descending distance signal. Society for Neuroscience Abstracts 15:54. [PG]Google Scholar
Grossberg, S. & Kuperstein, M. (1989) Neural dynamics of adaptive sensorymotor control. Pergamon Press. [GEA, JB]Google Scholar
Guitton, D., Buchtel, H. A. & Douglas, R. M. (1985) Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Experimental Brain Research 58:455–72. [MAG]CrossRefGoogle ScholarPubMed
Gurfinkel, V. S., Lipshits, M. I. & Lestienne, F. G. (1988) Anticipatory neck muscle activity associated with rapid arm movements. Neuroscience Letters 94:104–08. [ZH]CrossRefGoogle ScholarPubMed
Harris, C. S. (1965) Perceptual adaptation to inverted, reversed and displaced vision. Psychological Reviews 72:419–44. [rMF]CrossRefGoogle ScholarPubMed
Hasan, Z. (1991) Moving a human or robot arm with many degrees of freedom: Issues and ideas. In: 1990 Lectures in complex systems, vol. 3, ed. Nadel, L. & Stein, D.. Addison-Wesley. [JG, ZH]Google Scholar
Hasan, Z. & Karst, G. M. (1989) Muscle activity for initiation of planar, twojoint arm movements in different directions. Experimental Brain Research 76:673–89. [aMF]CrossRefGoogle ScholarPubMed
Hasan, Z. & Stuart, D. G. (1984) Mammalian muscle receptors. In: Handbook of the spinal cord, vols. 2 & 3: Anatomy and physiology, ed. Davidoff, R. A.. Marcel Dekker. [JG]Google Scholar
Helms Tillery, S. I., Flanders, M. & Soechting, J. F. (1991) A coordinate system for the synthesis of visual and kinesthetic information. Journal of Neuroscience 11:770–78. [arMF, JG]CrossRefGoogle Scholar
Hening, W., Favilla, M. & Ghez, C. (1988a) Trajectory control in targeted force impulses. V. Gradual specification of response amplitude. Experimental Brain Research 71:116–28. [JG]CrossRefGoogle ScholarPubMed
Hening, W., Vicario, D. & Ghez, C. (1988b) Trajectory control in targeted force impulses. IV. Influences of choice, prior experience and urgency. Experimental Brain Research 71:103–15. [JG]CrossRefGoogle ScholarPubMed
Hepp, K. & Hepp-Reymond, M.-C. (1989) Donder's and Listing's law for reaching and grasping arm synergies. Society for Neuroscience Abstracts 15:604. [ZH]Google Scholar
Hikosaka, O. & Wurtz, R. H. (1983) Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. Journal of Neurophysiology 49:1268–84. [RMB]CrossRefGoogle ScholarPubMed
Hikosaka, O. & Wurtz, R. H. (1985) Modification of saccadic eye movements by GABA-related substances. II. Effects of muscimol in monkey substantia nigra pars reticulata. Journal of Neurophysiology 53:292308. [MAG]CrossRefGoogle ScholarPubMed
Hildreth, E. C. & Koch, C. (1987) The analysis of visual motion: From computational theory to neural mechanism. Annual Review of Neuroscience 10:477533. [aMF]CrossRefGoogle Scholar
Hinton, G. E., McClelland, J. L. & Rumelhart, D. E. (1986) Distributed representations. In: Parallel distributed processing, vol. 1, ed. Rumelhart, D. E. & McClelland, J. L.. MIT Press. [aMF]Google Scholar
Hogan, N. (1988) Planning and execution of multijoint movements. Canadian Journal of Physiology and Pharmacology 66:508–17. [JG]CrossRefGoogle ScholarPubMed
Hogan, N. & Flash, T. (1987) Moving gracefully: Quantitative theories of motor coordination. Trends in Neurosciences 10:170–74. [aMF]CrossRefGoogle Scholar
Hogan, N., Bizzi, E., Mussa-Ivaldi, F. A. & Flash, T. (1987) Controlling multijoint motor behavior. Exercise and Sports Science Reviews 15:153–90. [aMF]CrossRefGoogle ScholarPubMed
Holding, D. H. (1968) Accuracy of delayed aiming responses. Psychonomic Science 12:125–26. [DHH]CrossRefGoogle Scholar
Hollerbach, J. M. & Flash, T. (1982) Dynamic interactions between limb segments during planar arm movement. Biological Cybernetics 44:6777. [aMF]CrossRefGoogle ScholarPubMed
Hollingworth, H. L. (1909) The inaccuracy of movement. Archives of Psychology 13:187. [CJW]Google Scholar
Holmes, G. (1918) Disturbances of visual orientation. British Journal of Ophthalmology 2:449–68. [RMB]CrossRefGoogle ScholarPubMed
Hore, J., Goodale, M. & Vilis, T. (1990) The axis of rotation of the arm during pointing. Society for Neuroscience Abstracts 16:1087. [ZH]Google Scholar
Hoy, M. G. & Zernicke, R. F. (1986) The role of intersegmental dynamics during rapid limb oscillations. Journal of Biomechanics 19:867–77. [aMF]CrossRefGoogle ScholarPubMed
Iberall, T., Bingham, G. & Arbib, M. A. (1986) Opposition space as a structuring concept for the analysis of skilled hand movements. Experimental Brain Research Series 15:158–73. [MAA]Google Scholar
Jakobson, L. S., Goodale, M. A. & Keillor, J. M. (1991) A dissociation between grasping real and remembered objects in visual form agnosia. Third IBRO World Congress of Neuroscience Abstracts 177. [MAG]Google Scholar
Jeannerod, M. (1988) The neural and behavioural organization of goaldirected movements. Oxford University Press (Oxford). [CJW]Google Scholar
Johnson, R. A. & Wichern, D. W. (1982) Applied multivariate statistical analysis. Prentice-Hall. [aMF]Google Scholar
Jones, R. D., Donaldson, I. M. & Parkin, P. J. (1989) Impairment and recovery of ipsilateral sensory-motor function following unilateral cerebral infarction. Brain 112:113–32. [SCG]CrossRefGoogle ScholarPubMed
Jordan, M. & Rosenbaum, D. (1989) Action. In: Foundations of cognitive neuroscience, ed. Poster, M. I.. MIT Press. [MK]Google Scholar
Joyce, G. C., Rack, P. M. H. & Ross, H. F. (1974) The forces generated at the human elbow joint in response to imposed sinusoidal movements of the forearm. Journal of Physiology 240:351–74. [LLEM]CrossRefGoogle ScholarPubMed
Kalaska, J. F., Cohen, D. A., Hyde, M. L. & Prud'homme, M. (1989) A comparison of movement direction-related versus load direction-related activity in primate motor cortex using a two-dimensional reaching task. Journal of Neuroscience 9:20802102. [aMF]CrossRefGoogle ScholarPubMed
Kalaska, J. F., Cohen, D. A., Prud'homme, M. & Hyde, M. L. (1990) Parietal area 5 neuronal activity encodes movement kinematics, not movement dynamics. Experimental Brain Research 80:351–64. [aMF]CrossRefGoogle Scholar
Kalish, M. (1991) Human performance in visually directed reaching: Results on systematic, idiosyncratic error. Proceedings of the 13th Annual Conference of the Cognitive Science Society: 770–74. [MK, DZ]Google Scholar
Karst, G. M. & Hasan, Z. (1991a) Initiation rules for planar, two-joint arm movements: Agonist selection for movements throughout the work space. Journal of Neurophysiology 66:1579–93. [ZH]CrossRefGoogle ScholarPubMed
Karst, G. M. & Hasan, Z. (1991b) Timing and magnitude of electromyographic activity for two-joint arm movements in different directions. Journal of Neurophysiology 66:15941604. [ZH]CrossRefGoogle ScholarPubMed
Kawato, M., Maeda, Y., Uno, Y. & Suzuki, R. (1990) Trajectory formation of arm movement by cascade neural network model based on minimum torque-change criterion. Biological Cybernetics 62:275–88. [aMF, MK]CrossRefGoogle ScholarPubMed
Kelly, T. M. & Chapple, W. D. (1990) Kinematic analysis of the defense response in crayfish. Journal of Neurophysiology 64:6476. [rMF]CrossRefGoogle ScholarPubMed
Kelso, J. A. S. & Holt, K. G. (1980) Exploring a vibratory systems analysis of human movement production. Journal of Neurophysiology 43:1183–96. [MK]CrossRefGoogle ScholarPubMed
Keshner, E. A., Campbell, D., Katz, R. T. & Peterson, B. W. (1989) Neck muscle activation patterns in humans during isometric head stabilization. Experimental Brain Research 75:335–44. [aMF]CrossRefGoogle ScholarPubMed
Knudsen, E. I., duLac, S. & Esterly, S. (1987) Computational maps in the brain. Annual Review of Neuroscience 10:4165. [aMF]CrossRefGoogle ScholarPubMed
Konishi, M. (1986) Centrally synthesized maps of sensory space. Trends in Neurosciences 9:163–68. [aMF]CrossRefGoogle Scholar
Kostyk, S. K. & Grobstein, P. (1987a) Neuronal organization underlying visually elicited prey orienting in the frog. I. Effects of various unilateral lesions. Neuroscience 21:4155. [aMF, MAA, PG]CrossRefGoogle ScholarPubMed
Kostyk, S. K. & Grobstein, P. (1987b) Neuronal organization underlying visually elicited prey orienting in the frog. II. Anatomical studies on the laterality of central projections. Neuroscience 21:5782. [PG]CrossRefGoogle ScholarPubMed
Kostyk, S. K. & Grobstein, P. (1987c) Neuronal organization underlying visually elicited prey orienting in the frog. III. Evidence for the existence of an uncrossed descending tectofugal projection. Neuroscience 21:8396. [PG]CrossRefGoogle Scholar
Kuperstein, M. (1988a) Neural model of adaptive hand-eye coordination for simple postures. Science 239:1308–10. [arMF, GEA, MK]CrossRefGoogle Scholar
Kuperstein, M. (1988b) An adaptive model for mapping invariant target position. Behavioral Neuroscience 102:148–59. [aMF]CrossRefGoogle ScholarPubMed
Lacquaniti, F. (1989) Central representations of human limb movement as revealed by studies of drawing and writing. Trends in Neurosciences 12:287–91. [aMF]CrossRefGoogle Scholar
Lacquaniti, F., LeTaillanter, M., Lopiano, L. & Maioli, C. (1990) The control of limb geometry in cat posture. Journal of Physiology (London) 426:177–92. [FL]CrossRefGoogle ScholarPubMed
Lacquaniti, F. & Maioli, C. (1991) Distributed control of limb position and force. In: Tutorials in motor behavior II, ed. Stelmach, G. E. & Requin, J.. Elsevier. [FL]Google Scholar
Lacquaniti, F., Soechting, J. F. & Terzuolo, C. A. (1986) Path constraints on point-to-point arm movements in three-dimensional space. Neuroscience 17:313–24. [rMF]CrossRefGoogle ScholarPubMed
Lee, C., Rohrer, W. H. & Sparks, D. L. (1988) Population coding of saccadic eye movements by neurons in the superior colliculus. Nature 332:357–59. [aMF]CrossRefGoogle ScholarPubMed
Lehky, S. R. & Sejnowski, T. J. (1990) Neural network model of visual cortex for determining surface curvature from images of shaded surfaces. Proceedings of the Royal Society of London 240:251–78. [GEA]Google ScholarPubMed
Linsker, R. (1990) Perceptual neural organization: Some approaches based on network models and information theory. Annual Review of Neuroscience 13:257–81. [aMF]CrossRefGoogle ScholarPubMed
Livingston, M. & Hubel, D. (1988) Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science 240:740–49. [aMF]CrossRefGoogle Scholar
Llinás, R. & Sasaki, K. (1989) The functional organization of the olivocerebellar system as examined by multiple Purkinje cell recordings. European Journal of Neuroscience 1:587602. [GM]CrossRefGoogle ScholarPubMed
Logothetis, N. K., Schiller, P. H., Charles, E. R. & Hurlbert, A. C. (1989) Perceptual deficits and the activity of the color-opponent and broad-band pathways at isoluminance. Science 247:214–17. [aMF]CrossRefGoogle Scholar
MacKenzie, C. L., Sivak, B. & Elliot, D. (1988) Manual localization of lateralized visual targets. Journal of Motor Behavior 20:433–57. [MB]CrossRefGoogle ScholarPubMed
Macpherson, J. M. (1988) Strategies that simplify the control of quadrupedal stance. I. Forces at the ground. Journal of Neurophysiology 60:204–17. [aMF]CrossRefGoogle ScholarPubMed
Marr, D. (1982) Vision. Freeman. [aMF]Google Scholar
Masino, T. & Grobstein, P. (1989a) The organization of descending tectofugal pathways underlying orienting in the frog, Rana pipiens. I. Lateralization, parcellation, and an intermediate spatial representation. Experimental Brain Research 75:227–44. [aMF, PG]CrossRefGoogle Scholar
Masino, T. & Grobstein, P. (1989b) The organization of descending tectofugal pathways underlying orienting in the frog, Rana pipiens. II. Evidence for the involvement of a tecto-tegmento-spinal pathway. Experimental Brain Research 75:245–64. [PG]CrossRefGoogle ScholarPubMed
Masino, T. & Knudsen, E. I. (1990) Horizontal and vertical components of head movement are controlled by distinct neural circuits in the barn owl. Nature 345:434–37. [aMF, PG]CrossRefGoogle ScholarPubMed
Massone, L. & Bizzi, E. (1989) A neural network model for limb trajectory formation. Biological Cybernetics 61:417–25. [aMF]CrossRefGoogle ScholarPubMed
Mays, L. E. & Sparks, D. L. (1980) Saccades are spatially, not retinocentrically coded. Science 208:1163–65. [aMF]CrossRefGoogle Scholar
McCloskey, D. I. (1978) Kinesthetic sensibility. Physiological Reviews 58:763820. [aMF]CrossRefGoogle ScholarPubMed
McIlwain, J. T. (1990) Topography of eye-position sensitivity of saccades evoked electrically from the cat's superior colliculus. Visual Neuroscience 4:289–98. [aMF]CrossRefGoogle ScholarPubMed
Mel, B. W. (1990) Vision-based robot motion planning. In: Neural networks for control, ed. Miller, W. T., Sutton, R. S. & Werbos, P. J.. MIT Press. [GEA]Google Scholar
Milner, A. D. & Goodale, M. A. (1992) Visual pathways to perception and action. In: Progress in brain research: The visually responsive neuron: From basic neurophysiology to behavior, ed. Hicks, T. P., Molotchnikoff, S. & Ono, T.. Elsevier (in press). [MAG]Google Scholar
Mittelstaedt, H. (1983) A new solution to the problem of the subjective vertical. Naturwissenschaften 70:272–81. [GM]CrossRefGoogle Scholar
Morasso, P. (1981) Spatial control of arm movements. Experimental Brain Research 42:223–27. [JG, LLEM]CrossRefGoogle ScholarPubMed
Neilson, P. D., Neilson, M. D. & O'Dwyer, N. J. (1991) Adaptive model theory: Application to disorders of motor control. In: Approaches to the study of motor control and learning, ed. Summers, J. J.. North-Holland. [PDN]Google Scholar
Olson, C. T. & Hanson, S. J. (1990) Spatial representation of the body. In: Connectionist modeling and brain function, ed. Hanson, S. J. & Olson, C. R.. MIT Press. [MK]Google Scholar
Ostry, D. J., Flanagan, J. R., Feldman, A. G. & Munhall, K. G. (in press) Jaw movement kinematics and control. In: Tutorials in motor behavior II, ed. G. E. Stelmach & J. Requin. North-Holland. [DJO]Google Scholar
Paillard, J. (1986) Cognitive versus sensorimotor encoding of spatial information. In: Cognitive processes and spatial orientation in animal and man, ed. Ellen, P. & C., Thinus-Blanc. Martinus Nijhoff. [JB]Google Scholar
Paillard, J. (1991) Knowing where and knowing how to get there. In: Brain and space, ed. Paillard, J.. Oxford University Press. [JB]CrossRefGoogle Scholar
Paillard, J., Jordan, P. & Brouchon, M. (1981) Visual motion cues in prismatic adaptation: Evidence of two separate and additive processes. Acta Psychologica 48:253–70. [JB]CrossRefGoogle ScholarPubMed
Pedoe, D. (1970) A course of geometry for colleges and universities. Cambridge University Press. [FLB]Google Scholar
Pellionisz, A. J. (1984) Coordination: A vector-matrix description of transformations of overcomplete CNS coordinates and a tensorial solution using the Moore-Penrose generalized inverse. Journal of Theoretical Biology 110:353–75. [MAA]CrossRefGoogle Scholar
Pellionisz, A. J. (1988) Tensorial aspects of the multidimensional massively parallel sensorimotor function of neuronal networks. Progress in Brain Research 76:341–54. [GEA]CrossRefGoogle ScholarPubMed
Pellionisz, A. J. & Graf, W. (1987) Tensor network model of the “threeneuron vestibulo-ocular reflex-are” in cat. Journal of Theoretical Neurobiology 5:127–51. [aMF]Google Scholar
Pellionisz, A. & Llinás, R. (1979) Brain modeling by tensor network theory and computer simulation. The cerebellum: Distributed processor for predictive coordination. Neuroscience 4:323–48. [aMF]CrossRefGoogle ScholarPubMed
Pellionisz, A. & Llinás, R. (1980) Tensorial approach to the geometry of brain function: Cerebellar coordination via a metric tensor. Neuroscience 5:1125–36. [aMF]CrossRefGoogle Scholar
Pellionisz, A. & Llinás, R. (1982) Space-time representation in the brain. The cerebellum as a predictive space-time metric tensor. Neuroscience 7:2949–70. [aMF]CrossRefGoogle ScholarPubMed
Penrose, R. (1955) On best approximation solutions of linear matrix equations. Cambridge Philosophical Society 51:406. [MAA]CrossRefGoogle Scholar
Perkell, J. & Nelson, W. (1985). Variability in the production of the vowels /i/ and /a/. Journal of the Acoustical Society of America 77:1889–95. [DJO]CrossRefGoogle Scholar
Phillips, J. (1986; 1990) Freedom in machinery, vol. I: Introducing screw theory, vol 2: Screw theory exemplified. Cambridge University Press. [VH]Google Scholar
Poggio, G. F., Gonzalez, F. & Krause, F. (1988) Stereoscopic mechanisms in the monkey visual cortex: Binocular correlation and disparity selectivity. Journal of Neuroscience 8:4531–50. [aMF, RMB]CrossRefGoogle ScholarPubMed
Poizner, H. & Soechting, J. F. (1992) New strategies for studying higher level motor disorders. In: Cognitive neuropsychology in clinical practice, ed. Margolin, D.. Oxford University Press (in press). [rMF]Google Scholar
Polit, A. & Bizzi, E. (1979) Characteristics of motor programs underlying arm movements in monkeys. Journal of Neurophysiology 42:183–94. [rMF]CrossRefGoogle ScholarPubMed
Poulton, E. C. (1975) Range effects in experiments on people. American Journal of Psychology 88:332. [CJW]CrossRefGoogle Scholar
Poulton, E. C. (1981) Human manual control. In: Handbook of physiology, sec. 1. The nervous system: vol. 2. Motor control, part 2, ed. Brooks, V. B.. American Physiological Society. [JG]Google Scholar
Prablanc, C., Pélisson, D. & Goodale, M. A. (1986) Visual control of reaching movements without vision of the limb. I. Role of retinal feedback of target position in guiding the hand. Experimental Brain Research 62:293302. [JG]CrossRefGoogle ScholarPubMed
Rumelhart, D. E., McClelland, J. L. & PDP Research Group (1986) Parallel distributed processing: Explorations in the Microstructure of Cognition, vols. 1 & 2. MIT Press. [GEA]CrossRefGoogle Scholar
Rymer, W. Z. & D'Almeida, A. (1980) Joint position sense: The effects of muscle contraction. Brain 103:122. [ZH]CrossRefGoogle ScholarPubMed
Sakata, H., Shibutani, H. & Kawano, K. (1980) Spatial properties of visual fixation neurons in posterior parietal association cortex of the monkey. Journal of Neurophysiology 43:1654–72. [RMB]CrossRefGoogle ScholarPubMed
Sanes, J. N. & Evarts, E. V. (1983) Effects of perturbation on accuracy of arm movements. Journal of Neuroscience 3:977–86. [LLEM]CrossRefGoogle ScholarPubMed
Sanes, J. N. & Evarts, E. V. (1984) Motor psychophysics. Human Neurobiology 2:217–25. [LLEM]Google ScholarPubMed
Schwartz, A. B., Kettner, R. E. & Georgopoulos, A. P. (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement. Journal of Neuroscience 8:2913–27. [YB]CrossRefGoogle ScholarPubMed
Sejnowski, T. J. (1987) Computational models and the development of topographic projections. Trends in Neuroscience 10:304–05. [aMF]CrossRefGoogle Scholar
Sejnowski, T. J., Koch, K. & Churchland, P. S. (1988) Computational neuroscience. Science 241:12991306. [aMF]CrossRefGoogle ScholarPubMed
Shallice, T. (1988) From neuropsychology to mental structure. Cambridge University Press. [PG]CrossRefGoogle Scholar
Siciliano, B. (1990) A closed-loop inverse kinematic scheme for on-line jointbased robot control. Robotica 8:231–43. [JPT]CrossRefGoogle Scholar
Siddall, G. J., Holding, D. H. & Draper, J. (1957) Errors of aim and extent in manual point to point movement. Occupational Psychology 31:185–95. [DHH]Google Scholar
Simpson, J. I. & Graf, W. (1985) The selection of reference frame and its investigators. In: Adaptive mechanisms in gaze control, ed. Berthoz, A. & Jones, G. Melvill. Elsevier Science Publishers. [aMF]Google Scholar
Simpson, J. I., Leonard, C. S. & Soodak, R. E. (1988) The accessory optic system of rabbit. II. Spatial organization of direction selectivity. Journal of Neurophysiology 60:2055–72. [aMF]CrossRefGoogle ScholarPubMed
Slack, C. W. (1953) Some characteristics of the “range effect.” Journal of Experimental Psychology 46:7680. [DHH]CrossRefGoogle ScholarPubMed
Smit, A. C., Van Gisbergen, J. A. & Cools, A. R. (1987) A parametric analysis of human saccades in different experimental paradigms. Vision Research 27:1745–62. [MAG]CrossRefGoogle ScholarPubMed
Smyrnis, N., Ashe, J., Taira, M., Lurito, J. T. & Georgopoulos, A. P. (1991) Motor cortical cell activity in a memorized delay task. Society for Neuroscience Abstracts 17:308. [rMF]Google Scholar
Soechting, J. F. (1982) Does position sense at the elbow reflect a sense of elbow joint angle or one of limb orientation? Brain Research 248:392–95. [SCG]CrossRefGoogle ScholarPubMed
Soechting, J. F. & Flanders, M. (1989a) Sensorimotor representations for pointing to targets in three-dimensional space. Journal of Neurophysiology 62:582–94. [arMF, GEA, MB, HC, JG, MAG, ZH, JPT, JW, CJW]CrossRefGoogle ScholarPubMed
Soechting, J. F. & Flanders, M. (1989b) Errors in pointing are due to approximations in sensorimotor transformations. Journal of Neurophysiology 62:595608. [arMF, MB, JG, HP, JPT]CrossRefGoogle ScholarPubMed
Soechting, J. F. & Flanders, M. (1990) Deducing central algorithms of arm movement control. In: Motor control: Concepts and issues, ed. Humphrey, D. R. & Freund, H.-J.. John Wiley. [aMF]Google Scholar
Soechting, J. F. & Lacquaniti, F. (1981) Invariant characteristics of a pointing movement in man. Journal of Neuroscience 1:710–20. [rMF]CrossRefGoogle ScholarPubMed
Soechting, J. F. & Ross, B. (1984) Psychophysical determination of coordinate representation of human arm orientation. Neuroscience 13:595604. [aMF, SCG]CrossRefGoogle ScholarPubMed
Soechting, J. F. & Terzuolo, C. A. (1986) An algorithm for the generation of curvilinear wrist motion in an arbitrary plane in three-dimensional space. Neuroscience 19:13951405. [aMF]CrossRefGoogle Scholar
Soechting, J. F., Helms Tillery, S. I. & Flanders, M. (1990) Transformation from head- to shoulder-centered representation of target direction in arm movements. Journal of Cognitive Neuroscience 2:3243. [arMF, MB, HP, JW, CJW]CrossRefGoogle ScholarPubMed
Sparks, D. L. (1986) Translation of sensory signals into commands for the control of saccadic eye movements: Role of the primate superior colliculus. Physiological Reviews 66:118–71. [aMF]CrossRefGoogle ScholarPubMed
Sparks, D. L. & Mays, L. E. (1990) Signal transformations required for the generation of saccadic eye movements. Annual Review of Neuroscience 13:309–36. [arMF]CrossRefGoogle ScholarPubMed
Straumarm, D., Haslwanter, T., Hepp-Reymond, M.-C. & Hepp, K. (1991) Listing's law for eye, head and arm movements and their synergistic control. Experimental Brain Research 86:209–15. [rMF]Google Scholar
Suga, N. (1982) Functional organization of the auditory cortex. Representation beyond tonotopy in the bat. In: Cortical sensory organization, vol. 3, ed. Woolsey, C. N.. Humana Press. [aMF]Google Scholar
Taylor, J. L. & McCloskey, D. I. (1988) Pointing. Behavioural Brain Research 29:15. [SCG]CrossRefGoogle ScholarPubMed
Thelen, E. & Fisher, D. M. (1983) The organization of spontaneous leg movements in newborn infants. Journal of Motor Behavior 29:353–77. [rMF]CrossRefGoogle Scholar
Trevelyan, J. P. (1989) Sensing and control for sheep shearing robots. IEEE Transcript on Robotics and Automation 5:716–27. [JPT]CrossRefGoogle Scholar
Trevelyan, J. P. (1992) Robots for shearing sheep. Oxford University Press. [JPT]Google Scholar
Trevelyan, J. P., Key, S. J. & Owens, R. A. (1982) Techniques for surface representation arid adaptation in automated sheep shearing. Proceedings of the Twelfth International Symposium on Industrial Robots, Paris. [JPT]Google Scholar
van Gisbergen, J. A. M., van Opstal, A. J. & Tax, A. A. M. (1987) Collicular ensemble coding of saccades based on vector summation. Neuroscience 21:541–55. [aMF]CrossRefGoogle ScholarPubMed
van Opstal, A. J. & van Gisbergen, J. A. M. (1989) A nonlinear model for collicular spatial interactions underlying the metrical properties of electrically elicited saccades. Biological Cybernetics 60:171–83. [aMF]CrossRefGoogle ScholarPubMed
Vicario, D. S. & Ghez, C. (1984) The control of rapid limb movement in the cat. IV. Updating of ongoing isometric responses. Experimental Brain Research 55:134–44. [JG]CrossRefGoogle ScholarPubMed
Vierordt, K. (1868) Der Zeitsinn [The sense of time]. Verlag der H. Laupp'schen Buchhandlung. [CJW]Google Scholar
von Hofsten, C. (1979) Development of visually directed reaching: The approach phase. Journal of Human Movement Studies 5:160–78. [rMF]Google Scholar
von Hofsten, C. & Rösblad, B. (1988) The integration of sensory information in the development of precise manual pointing. Neuropsychologia 26:805–21. [JG, MK]CrossRefGoogle ScholarPubMed
Waitzman, D. M., Ma, T. P., Optican, L. M. & Wurtz, R. H. (1988) Superior colliculus neurons provide the saccadic motor error signal. Experimental Brain Research 72:649–52. [aMF]CrossRefGoogle ScholarPubMed
Whitney, D. E. (1972) The mathematics of coordinated control of prosthetic arms and manipulators. ASME Journal of Dynamic Systems, Measurement & Control 94:303–09. [MAA]CrossRefGoogle Scholar
Wise, S. P. (1985) The primate premotor cortex: Past, present and preparatory. Annual Review of Neuroscience 8:119. [RMB]CrossRefGoogle ScholarPubMed
Woodworth, R. S. (1899) The accuracy of voluntary movement. Psychological Review (Series of Monograph Supplements) 3(3): 1114. [DJB, MB]Google Scholar
Worringham, C. J. (1991) Some historical roots of phenomena and methods in motor behavior research. In: Tutorials in motor behavior II, ed. Stelmach, G. E. & Requin, J.. North-Holland. [CJW]Google Scholar
Worringham, C. J. & Beringer, D. B. (1989) Operator orientation and compatibility in visual-motor task performance. Ergonomics 32:387–99. [ZH]CrossRefGoogle ScholarPubMed
Worringham, C. J. & Stelmach, G. E. (1985) The contribution of gravitational torques to limb position sense. Experimental Brain Research 61:3842. [GM]CrossRefGoogle ScholarPubMed
Worringham, C. J., Stelmach, G. E. & Martin, Z. E. (1987) Limb segment inclination sense in proprioception. Experimental Brain Research 66:653–58. [SCG]CrossRefGoogle ScholarPubMed
Yardley, L. (1990) Contribution of somatosensory information to perception of the visual vertical with body tilt and rotating visual field. Perception & Psychophysics 48:131–34. [JB]CrossRefGoogle ScholarPubMed
Zajac, F. E. & Gordon, M. E. (1989) Determining muscle's force and action in multi-articular movement. Exercise and Sports Science Reviews 17:187230. [aMF]Google ScholarPubMed