Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-03T03:38:25.431Z Has data issue: false hasContentIssue false

Association between total dietary antioxidant capacity and food groups and incidence of depression in a cohort of Brazilian graduates (CUME Project)

Published online by Cambridge University Press:  01 February 2023

Gabriela Amorim Pereira Sol*
Affiliation:
Faculty of Medicine, Department of Collective Health, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
Helen Hermana Miranda Hermsdorff
Affiliation:
Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
Arieta Carla Gualandi Leal
Affiliation:
Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
Adriano Marçal Pimenta
Affiliation:
Department of Nursing, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
Josefina Bressan
Affiliation:
Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
Ana Paula Boroni Moreira
Affiliation:
Department of Nutrition, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
Aline Silva de Aguiar
Affiliation:
Faculty of Medicine, Department of Collective Health, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil Department of Nutrition and Dietetics, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
*
*Corresponding author: Gabriela Amorim Pereira Sol, email gabiamorimpereira3@gmail.com

Abstract

This study aims to evaluate the association between Dietary Total Antioxidant Capacity (dTAC) and Total Antioxidant Capacity of food groups (fgTAC) with the incidence of depression in Brazilian graduates participating in the Cohort of Universities of Minas Gerais (CUME Study). The sample consisted of 2572 participants without a medical diagnosis of depression at baseline who responded to at least one follow-up questionnaire from the CUME Project. The Ferric Reducing Antioxidant Power assay was used to determine dTAC. Incidence of depression was estimated by self-reported medical diagnosis of depression during the years of cohort follow-up. Cox regression models were used to relate dTAC and fgTAC to the incidence of depression. The mean follow-up time was 2·96 (1·00) years, and 246 cases of depression were observed (32·3/1000 person-years). The mean dTAC was 11·03 (4·84) mmol/d. We found no associations between higher dTAC and lower risk of developing depression after adjusting for possible confounders. The incidence of depression was inversely associated with fgTAC of the beans and lentils group (hazard ratio (HR): 0·61; 95 % CI 0·41, 0·90). The fgTAC of the junk food group was positively associated with higher incidence of depression after all adjustments (HR: 1·57; 95 % CI 1·08, 2·26). Our findings do not support an association between dTAC and the incidence of depression in a highly educated Brazilian population. However, associations of fgTAC show the importance of analysing the food matrix in which these antioxidants are inserted. We highlight the need for more prospective studies with different nationalities to confirm these results.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

World Health Organization (2021) Depression. https://www.who.int/news-room/fact-sheets/detail/depression (accessed April 2022).Google Scholar
Marcus, M, Yasamy, M, van Ommeren, MV, et al. (2012) Depression: a Global Public Health Concern. WHO Department of Mental Health and Substance Abuse. –https://psycnet.apa.org/get-pe-doi.cfm?doi=10.1037/e517532013–004 (accessed April 2022).CrossRefGoogle Scholar
Ng, F, Berk, M, Dean, O, et al. (2008) Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol 11, 851876. https://doi.org/10.1017/S1461145707008401 CrossRefGoogle ScholarPubMed
Visentin, APV, Colombo, R, Scotton, E, et al. (2020) Targeting inflammatory-mitochondrial response in major depression: current evidence and further challenges. Oxid Med Cell Longev 2020, 2972968. https://doi.org/10.1155/2020/2972968 CrossRefGoogle ScholarPubMed
Kruk, J, Aboul-Enein, HY, Kładna, A, et al. (2019) Oxidative stress in biological systems and its relation with pathophysiological functions: the effect of physical activity on cellular redox homeostasis. Free Radic Res 53, 497521. https://doi.org/10.1080/10715762.2019.1612059 CrossRefGoogle ScholarPubMed
Lehtinen, M & Bonni, A (2006) Modeling oxidative stress in the central nervous system. Curr Mol Med 6, 871881. https://doi.org/10.2174/156652406779010786 CrossRefGoogle ScholarPubMed
Bajpai, A, Verma, AK, Srivastava, M, et al. (2014) Oxidative stress and major depression. J Clin Diagn Res 8, CC04CC07. https://doi.org/10.7860/JCDR/2014/10258.5292 Google ScholarPubMed
Du, J, Zhu, M, Bao, H, et al. (2016) The role of nutrients in protecting mitochondrial function and neurotransmitter signaling: implications for the treatment of depression, PTSD, and suicidal behaviors. Crit Rev Food Sci Nutr 56, 25602578. https://doi.org/10.1080/10408398.2013.876960 CrossRefGoogle ScholarPubMed
Ferriani, LO, Silva, DA, Molina, MD, et al. (2022) Associations of depression and intake of antioxidants and vitamin B complex: results of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). J Affect Disord 297, 259268. https://doi.org/10.1016/j.jad.2021.10.027 CrossRefGoogle ScholarPubMed
Li, Z, Wang, W, Xin, X, et al. (2018) Association of total zinc, iron, copper and selenium intakes with depression in the US adults. J Affect Disord 228, 6874. https://doi.org/10.1016/J.JAD.2017.12.004 CrossRefGoogle ScholarPubMed
Serafini, M & Del Rio, D (2004) Understanding the association between dietary antioxidants, redox status and disease: is the Total Antioxidant Capacity the right tool? Redox Rep 9, 145152. https://doi.org/10.1179/135100004225004814 CrossRefGoogle ScholarPubMed
Carlsen, MH, Halvorsen, BL, Holte, K, et al. (2010) The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J 9, 111. https://doi.org/10.1186/1475–2891–9–3 CrossRefGoogle ScholarPubMed
Sabião, TS, Bressan, J, Pimenta, AM, et al. (2021) Influence of dietary total antioxidant capacity on the association between smoking and hypertension in Brazilian graduates (CUME project). Nutr Metab Cardiovasc Dis 31, 26282636. https://doi.org/10.1016/J.NUMECD.2021.05.025 CrossRefGoogle ScholarPubMed
Nascimento-Souza, MA, Paiva, PG, Martino, HSD, et al. (2018) Dietary total antioxidant capacity as a tool in health outcomes in middle-aged and older adults: a systematic review. Crit Rev Food Sci Nutr 58, 905912. https://doi.org/10.1080/10408398.2016.1230089 CrossRefGoogle ScholarPubMed
Hermsdorff, HHM, Puchau, B, Volp, ACP, et al. (2011) Dietary total antioxidant capacity is inversely related to central adiposity as well as to metabolic and oxidative stress markers in healthy young adults. Nutr Metab 8, 18. https://doi.org/10.1186/1743–7075–8–59/FIGURES/2 CrossRefGoogle ScholarPubMed
Pereira, GA, Da Silva, A, Hermana, H, et al. (2021) Association of dietary total antioxidant capacity with depression, anxiety, and sleep disorders: a systematic review of observational studies. J Clin Transl Res 7, 631. https://doi.org/10.18053/jctres.07.202105.005 Google ScholarPubMed
Abshirini, M, Siassi, F, Koohdani, F, et al. (2019) Dietary total antioxidant capacity is inversely associated with depression, anxiety and some oxidative stress biomarkers in postmenopausal women: a cross-sectional study. Ann Gen Psychiatry 18, 19. https://doi.org/10.1186/S12991–019–0225–7 CrossRefGoogle ScholarPubMed
Daneshzad, E, Keshavarz, SA, Qorbani, M, et al. (2020) Dietary total antioxidant capacity and its association with sleep, stress, anxiety, and depression score: a cross-sectional study among diabetic women. Clin Nutr ESPEN 37, 187194. https://doi.org/10.1016/J.CLNESP.2020.03.002 CrossRefGoogle Scholar
Milajerdi, A, Keshteli, AH, Afshar, H, et al. (2019) Dietary total antioxidant capacity in relation to depression and anxiety in Iranian adults. Nutrition 65, 8590. https://doi.org/10.1016/J.NUT.2018.11.017 CrossRefGoogle ScholarPubMed
Domingos, ALG, Da Silva Miranda, AE, Pimenta, AM, et al. (2018) Cohort profile: the Cohort of Universities of Minas Gerais (CUME). Int J Epidemiol 47, 17431744h. https://doi.org/10.1093/IJE/DYY152 CrossRefGoogle Scholar
Schmidt, MI, Duncan, BB, Mill, JG, et al. (2015) Cohort profile: longitudinal study of adult health (ELSA-Brasil). Int J Epidemiol 44, 6875. https://doi.org/10.1093/IJE/DYU027 CrossRefGoogle ScholarPubMed
Santos, BF, Oliveira, HN, Miranda, AES, et al. (2021) Research quality assessment: reliability and validation of the self-reported diagnosis of depression for participants of the Cohort of Universities of Minas Gerais (CUME project). J Affect Disord Rep 6, 100238. https://doi.org/10.1016/J.JADR.2021.100238 CrossRefGoogle Scholar
Azarias, HG, Marques-Rocha, JL, Miranda, AE, et al. (2021) Online food frequency questionnaire from the cohort of Universities of Minas Gerais (CUME Project, Brazil): construction, validity, and reproducibility. Front Nutr 8, 649. https://doi.org/10.3389/FNUT.2021.709915 CrossRefGoogle Scholar
Instituto Brasileiro de Geografia e Estatística-IBGE (2011) Table of Nutritional Composition of Food Consumed in Brazil. Rio de Janeiro, Brazil. https://biblioteca.ibge.gov.br/visualizacao/livros/liv50002.pdf?gathStatIcon=true (accessed April 2022).Google Scholar
Universidade Estadual de Campinas - UNICAMP (2011) TACO project (Brazilian Table of Food Composition), 4th ed. NEPA- UNICAMP, Campinas-SP. https://www.cfn.org.br/wp-content/uploads/2017/03/taco_4_edicao_ampliada_e_revisada.pdf (accessed April 2022).Google Scholar
Gebhardt, SE & Thomas, RG (2002) Nutritive Value of Foods. US Government Printing Office: Department of Agriculture, Agricultural Research Service.Google Scholar
Koehnlein, EA, Bracht, A, Nishida, VS, et al. (2014) Total antioxidant capacity and phenolic content of the Brazilian diet: a real scenario. Int J Food Sci Nutr 65, 293298. https://doi.org/10.3109/09637486.2013.879285 CrossRefGoogle Scholar
Willett, W (1998) Nutritional Epidemiology, 2nd ed. New York: Oxford University Press.CrossRefGoogle Scholar
National Institute on Alcohol Abuse and Alcoholism (2022) Drinking Levels Defined. https://www.niaaa.nih.gov/alcohol-health/overview-alcohol-consumption/moderate-binge-drinking (accessed April 2022).Google Scholar
World Health Organization (2010) Global Recommendations on Physical Activity for Health. https://www.who.int/publications/i/item/9789241599979 (accessed April 2022).Google Scholar
World Health Organization/WHO. (1998) Obesity: Preventing and Managing the Global Epidemic. WHO Technical Report Series 894, Geneva. https://www.who.int/publications/i/item/9789241599979 (accessed April 2022).Google Scholar
Organización Panamericana de La Salud XXXVI (2001) Meeting of the Health Research Advisory Committee – Multicentric Survey – Wellbeing and Aging Health (SABE) in Latin America and the Caribbean – Preliminary report.http://www.opas.org/program/sabe.htm (accessed April 2022).Google Scholar
Miranda, AD, Ferreira, AV, Oliveira, FD, et al. (2017) Validation of metabolic syndrome and its self reported components in the CUME study. REME Rev Min Enferm 21, e1069. –https://doi.org/10.5935/1415–2762.20170079 CrossRefGoogle Scholar
Textor, J & Hardt, J (2011) DAGitty: a graphical tool for analyzing causal diagrams. Epidemiol 22, 745. https://doi.org/10.1097/EDE.0B013E318225C2BE CrossRefGoogle ScholarPubMed
Greenland, S, Pearl, J & Robins, JM (1999) Causal diagrams for epidemiologic research. Epidemiol 10, 3748. https://doi.org/10.1097/00001648–199901000–00008 CrossRefGoogle ScholarPubMed
Hermsdorff, HHM, Zulet, , Puchau, B, et al. (2010) Fruit and vegetable consumption and proinflammatory gene expression from peripheral blood mononuclear cells in young adults: a translational study. Nutr Metab 7, 111. https://doi.org/10.1186/1743–7075–7–42/TABLES/5 CrossRefGoogle ScholarPubMed
Sousa, KT, Marques, ES, Levy, RB, et al. (2019) Food consumption and depression among Brazilian adults: results from the Brazilian National Health Survey, 2013. Cad Saude Publica 36, 00245818. https://doi.org/10.1590/0102–311X00245818 Google ScholarPubMed
Paskulin, JTA, Drehmer, M, Olinto, MT, et al. (2017) Association between dietary patterns and mental disorders in pregnant women in Southern Brazil. Rev Bras Psiquiatr 39, 208215.CrossRefGoogle ScholarPubMed
Silva, AG, Rocha, SG & Brazaca, C (2009) Physico-chemical characterization, protein digestibility and antioxidant activity of commun bean (Phaseolus vulgaris L.). Braz J Food Nutr 20, 591–589.Google Scholar
Velásquez-Meléndez, G, Mendes, LL, Pessoa, MC, et al. (2012) Trends in frequency of consumption of beans assessed by means of a telephone survey in Brazilian state capitals between 2006 and 2009. Cien Saude Colet 17, 33633370. –https://doi.org/10.1590/S1413–81232012001200021 CrossRefGoogle ScholarPubMed
Pereira, GA, Bressan, J, Oliveira, FLP, et al. (2019) Dietary folate intake is negatively associated with excess body weight in Brazilian graduates and postgraduates (CUME Project). Nutrients 11, 518. https://doi.org/10.3390/NU11030518 CrossRefGoogle ScholarPubMed
Miyaki, K, Song, Y, Htun, NC, et al. (2012) Folate intake and depressive symptoms in Japanese workers considering SES and job stress factors: J-HOPE study. BMC Psychiatry 12, 18. https://doi.org/10.1186/1471–244X-12–33 CrossRefGoogle ScholarPubMed
Murakami, K, Miyake, Y, Sasaki, S, et al. (2010) Dietary folate, riboflavin, vitamin B-6, and vitamin B-12 and depressive symptoms in early adolescence: the Ryukyus Child Health Study. Psychosom Med 72, 763768. https://doi.org/10.1097/PSY.0B013E3181F02F15 CrossRefGoogle ScholarPubMed
Rodrigues, AGM, da Costa Proença, RP, Calvo, MC, et al. (2013) Profile of the rice and beans food option when eating away from home at a buffet-by-weight restaurant. Cien Saude Colet 18, 335346. https://doi.org/10.1590/s1413-81232013000200005 CrossRefGoogle Scholar
Silveira, BKS, de Novaes, JF, Vieira, SA, et al. (2019) Sociodemographic characteristics and dietary patterns in cardiometabolic risk subjects. Br Food J 121, 27802790. https://doi.org/10.1108/BFJ-04–2019–0259 CrossRefGoogle Scholar
Adjibade, M, Julia, C, Allès, B, et al. (2019) Prospective association between ultra-processed food consumption and incident depressive symptoms in the French NutriNet-Santé cohort. BMC Med 17, 113. https://doi.org/10.1186/S12916–019–1312-Y CrossRefGoogle ScholarPubMed
Lobo, AS & Tramonte, VL (2004) Effects of supplementation and food fortification on mineral bioavailability. Rev Nutr 17, 107113. https://doi.org/10.1590/S1415–52732004000100012 CrossRefGoogle Scholar
Juul, F, Vaidean, G & Parekh, N (2021) Ultra-processed foods and cardiovascular diseases: potential mechanisms of action. Adv Nutr 12, 16731680. https://doi.org/10.1093/ADVANCES/NMAB049 CrossRefGoogle ScholarPubMed
Contreras-Rodriguez, O, Solanas, M & Escorihuela, RM (2022) Dissecting ultra-processed foods and drinks: do they have a potential to impact the brain? Rev Endocr Metab Disord 23, 697717. https://doi.org/10.1007/S11154–022–09711–2 CrossRefGoogle ScholarPubMed
Louzada, ML, Martins, AP, Canella, DS, et al. (2015) Impacto de alimentos ultraprocessados sobre o teor de micronutrientes da dieta no Brasil. Rev Saude Publica 49, 45. –https://doi.org/10.1590/S0034–8910.2015049006211 Google Scholar
Wang, J, Um, P, Dickerman, BA, et al. (2018) Zinc, magnesium, selenium and depression: a review of the evidence, potential mechanisms and implications. Nutrients 10, 584. https://doi.org/10.3390/nu10050584 CrossRefGoogle ScholarPubMed
Miki, T, Eguchi, M, Kochi, T, et al. (2020) Prospective study on the association between dietary non-enzymatic antioxidant capacity and depressive symptoms. Clin Nutr ESPEN 36, 9198. https://doi.org/10.1016/J.CLNESP.2020.01.010 CrossRefGoogle ScholarPubMed
De Oliveira, NG, Teixeira, IT, Theodoro, H, et al. (2019) Dietary total antioxidant capacity as a preventive factor against depression in climacteric women. Dement Neuropsychol 13, 305311. https://doi.org/10.1590/1980–57642018dn13–030007 CrossRefGoogle ScholarPubMed
Prohan, M, Amani, R, Nematpour, S, et al. (2014) Total antioxidant capacity of diet and serum, dietary antioxidant vitamins intake, and serum hs-CRP levels in relation to depression scales in university male students. Redox Rep 19, 133139. https://doi.org/10.1179/1351000214Y.0000000085 CrossRefGoogle ScholarPubMed
Hoare, E, Hockey, M, Ruusunen, A, et al. (2018) Does Fruit and vegetable consumption during adolescence predict adult depression? A longitudinal study of US adolescents. Front Psychiatry 9, 581. https://doi.org/10.3389/FPSYT.2018.00581 CrossRefGoogle ScholarPubMed
Kingsbury, M, Dupuis, G, Jacka, F, et al. (2016) Associations between fruit and vegetable consumption and depressive symptoms: evidence from a national Canadian longitudinal survey. J Epidemiol Community Health 70, 155161. https://doi.org/10.1136/JECH-2015–205858 CrossRefGoogle ScholarPubMed
Opie, RS, Itsiopoulos, C, Parletta, N, et al. (2017) Dietary recommendations for the prevention of depression. Nutr Neurosci 20, 161171. https://doi.org/10.1179/1476830515Y.0000000043 CrossRefGoogle ScholarPubMed
Seguí-Gómez, M, de la Fuente, C, Vázquez, Z, et al. (2006) Cohort profile: the ‘Seguimiento Universidad de Navarra’ (SUN) study. Int J Epidemiol 35, 14171422. https://doi.org/10.1093/IJE/DYL223 CrossRefGoogle Scholar
Pellegrini, N, Vitaglione, P, Granato, D, et al. (2018) Twenty-five years of total antioxidant capacity measurement of foods and biological fluids: merits and limitations J Sci Food Agric 100, 50645078. https://doi.org/10.1002/jsfa.9550 CrossRefGoogle Scholar
Supplementary material: File

Pereira Sol et al. supplementary material

Figure S1

Download Pereira Sol et al. supplementary material(File)
File 112.3 KB
Supplementary material: File

Pereira Sol et al. supplementary material

Table S1

Download Pereira Sol et al. supplementary material(File)
File 15.4 KB