Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-17T15:49:35.992Z Has data issue: false hasContentIssue false

The effects of replacing ghee with rapeseed oil on liver steatosis and enzymes, lipid profile, insulin resistance and anthropometric measurements in patients with non-alcoholic fatty liver disease: a randomised controlled clinical trial

Published online by Cambridge University Press:  19 March 2024

Fatemeh Maleki Sedgi
Affiliation:
Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
Mohammadreza Mohammad Hosseiniazar
Affiliation:
Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
Mohammad Alizadeh*
Affiliation:
Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
*
*Corresponding author: Mohammad Alizadeh, email alizadeh.m@umsu.ac.ir

Abstract

Non-alcoholic fatty liver disease (NAFLD), which is a prevalent hepatic condition worldwide, is expected to develop into the leading reason for end-stage fatty liver in the forthcoming decades. Incorporating rapeseed oil into a balanced diet may be beneficial in improving NAFLD. The goal of this trial was to evaluate the impact of substituting ghee with rapeseed oil on primary outcomes such as fatty liver and liver enzymes, as well as on secondary outcomes including glycaemic variables, lipid profile and anthropometric measurements in individuals with NAFLD. Over 12 weeks, 110 patients (seventy men and forty women; BMI (mean) 28·2 (sd 1·6 kg/m2); mean age 42 (sd 9·6) years), who daily consumed ghee, were assigned to the intervention or control group through random allocation. The intervention group was advised to substitute ghee with rapeseed oil in the same amount. The control group continued the consumption of ghee and was instructed to adhere to a healthy diet. Results showed a significant reduction in the steatosis in the intervention group in comparison with the control group (P < 0·001). However, a significant change in the levels of alanine aminotransferase (–14·4 μg/l), γ-glutamyl transferase (–1·8 μg/l), TAG (–39·7 mg/dl), total cholesterol (–17·2 mg/dl), LDL (–7·5 mg/dl), fasting blood glucose (–7·5 mg/dl), insulin (–3·05 mU/l), Homeostatic Model Assessment for Insulin Resistance (–0·9), Quantitative Insulin-Sensitivity Check Index (+0·01), weight (–4·3 kg), BMI (–0·04 kg/m2), waist (–5·6 cm) and waist:height ratio (–0·04) was seen in the intervention group. The consumption of rapeseed oil instead of ghee caused improvements in liver steatosis and enzymes, glycaemic variables and anthropometric measurements among individuals with NAFLD.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Li, J, Zou, B, Yeo, YH, et al. (2019) Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999–2019: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 4, 389398.CrossRefGoogle ScholarPubMed
Moghaddasifar, I, Lankarani, KB, Moosazadeh, M, et al. (2016) Prevalence of non-alcoholic fatty liver disease and its related factors in Iran. Int J Organ Transplant Med 7, 149160.Google ScholarPubMed
Carr, RM, Oranu, A & Khungar, V (2016) Nonalcoholic fatty liver disease: pathophysiology and management. Gastroenterol Clin 45, 639652.CrossRefGoogle ScholarPubMed
Chalasani, N, Younossi, Z, Lavine, JE, et al. (2012) The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology 142, 15921609.CrossRefGoogle Scholar
Abenavoli, L, Milic, N, Di Renzo, L, et al. (2016) Metabolic aspects of adult patients with nonalcoholic fatty liver disease. World J Gastroenterol 22, 7006.CrossRefGoogle ScholarPubMed
Marchesini, G, Bugianesi, E, Forlani, G, et al. (2003) Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37, 917923.CrossRefGoogle ScholarPubMed
Jang, YS, Joo, HJ, Park, YS, et al. (2023) Association between smoking cessation and non-alcoholic fatty liver disease using NAFLD liver fat score. Front Public Health 11, 1015919.CrossRefGoogle ScholarPubMed
Pouwels, S, Sakran, N, Graham, Y, et al. (2022) Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. BMC Endocr Disord 22, 19.CrossRefGoogle ScholarPubMed
Negi, CK, Babica, P, Bajard, L, et al. (2022) Insights into the molecular targets and emerging pharmacotherapeutic interventions for nonalcoholic fatty liver disease. Metabolism 126, 154925.CrossRefGoogle ScholarPubMed
Ferramosca, A & Zara, V (2014) Modulation of hepatic steatosis by dietary fatty acids. World J Gastroenterol: WJG 20, 1746.CrossRefGoogle ScholarPubMed
Lian, C-Y, Zhai, Z-Z, Li, Z-F, et al. (2020) High fat diet-triggered non-alcoholic fatty liver disease: a review of proposed mechanisms. Chem Biol Interact 330, 109199.CrossRefGoogle ScholarPubMed
Berná, G & Romero-Gomez, M (2020) The role of nutrition in non-alcoholic fatty liver disease: pathophysiology and management. Liver Int 40, 102108.CrossRefGoogle ScholarPubMed
Zelber-Sagi, S, Ivancovsky-Wajcman, D, Fliss Isakov, N, et al. (2018) High red and processed meat consumption is associated with non-alcoholic fatty liver disease and insulin resistance. J Hepatol 68, 12391246.CrossRefGoogle ScholarPubMed
Zelber-Sagi, S, Ratziu, V & Oren, R (2011) Nutrition and physical activity in NAFLD: an overview of the epidemiological evidence. World J Gastroenterol 17, 33773389.CrossRefGoogle ScholarPubMed
Mohammadifard, N, Nazem, M, Naderi, G-A, et al. (2010) Effect of hydrogenated, liquid and ghee oils on serum lipids profile. ARYA Atheroscler 6, 16.Google ScholarPubMed
Sserunjogi, ML, Abrahamsen, RK & Narvhus, J (1998) A review paper: current knowledge of ghee and related products. Int Dairy J 8, 677688.CrossRefGoogle Scholar
Rosqvist, F, Kullberg, J, Ståhlman, M, et al. (2019) Overeating saturated fat promotes fatty liver and ceramides compared with polyunsaturated fat: a randomized trial. J Clin Endocrinol Metab 104, 62076219.CrossRefGoogle ScholarPubMed
Erfani, S, Ghavami, M, Shoeibi, S, et al. (2020) Evaluation of fatty acids and volatile compounds in Iranian ghee by head space-solid phase microextraction coupled with gas chromatography/mass spectroscopy. J Agric Sci Technol 22, 147158.Google Scholar
Gao, Z, Yin, J, Zhang, J, et al. (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58, 15091517.CrossRefGoogle ScholarPubMed
Malinska, H, Hüttl, M, Oliyarnyk, O, et al. (2015) Conjugated linoleic acid reduces visceral and ectopic lipid accumulation and insulin resistance in chronic severe hypertriacylglycerolemia. Nutrition (Burbank, Los Angeles County, Calif) 31, 10451051.CrossRefGoogle ScholarPubMed
Obara, N, Fukushima, K, Ueno, Y, et al. (2010) Possible involvement and the mechanisms of excess trans-fatty acid consumption in severe NAFLD in mice. J Hepatol 53, 326334.CrossRefGoogle ScholarPubMed
Konuskana, DB, Arsalan, M, Oksuz, A (2018) Physicochemical properties of cold pressed sunflower, peanut, rapeseed, mustard and olive oils grown in the Eastern Mediterranean region. Saudi Journal of Biological Sciences 26, 340344.CrossRefGoogle Scholar
Grundy, SM (2002) Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 106, 31433421.Google Scholar
Lichtenstein, AH, Appel, LJ, Brands, M, et al. (2006) Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee. Circulation 114, 8296.CrossRefGoogle Scholar
Johnson, GH, Keast, DR & Kris-Etherton, PM (2007) Dietary modeling shows that the substitution of canola oil for fats commonly used in the United States would increase compliance with dietary recommendations for fatty acids. J Am Dietetic Assoc 107, 17261734.CrossRefGoogle ScholarPubMed
Ji, Y, Yin, Y, Sun, L, et al. (2020) The molecular and mechanistic insights based on gut–liver axis: nutritional target for non-alcoholic fatty liver disease (NAFLD) improvement. Int J Mol Sci 21, 3066.CrossRefGoogle ScholarPubMed
Ma, J, Zhou, Q & Li, H (2017) Gut microbiota and nonalcoholic fatty liver disease: insights on mechanisms and therapy. Nutrients 9, 1124.CrossRefGoogle ScholarPubMed
Kavyani, M, Saleh-Ghadimi, S, Dehghan, P, et al. (2021) Co-supplementation of camelina oil and a prebiotic is more effective for in improving cardiometabolic risk factors and mental health in patients with NAFLD: a randomized clinical trial. Food Funct 12, 85948604.CrossRefGoogle Scholar
Musazadeh, V, Dehghan, P, Saleh-Ghadimi, S, et al. (2021) n-3-rich Camelina sativa oil in the context of a weight loss program improves glucose homeostasis, inflammation and oxidative stress in patients with NAFLD: a randomised placebo-controlled clinical trial. Int J Clin Pract 75, e14744.CrossRefGoogle Scholar
Tarantino, G, Balsano, C, Santini, SJ, et al. (2021) It is high time physicians thought of natural products for alleviating NAFLD. Is there sufficient evidence to use them? Int J Mol Sci 22, 13424.CrossRefGoogle Scholar
Nigam, P, Bhatt, S, Misra, A, et al. (2014) Effect of a 6-month intervention with cooking oils containing a high concentration of monounsaturated fatty acids (olive and canola oils) compared with control oil in male Asian Indians with nonalcoholic fatty liver disease. Diabetes Technol Ther 16, 255261.CrossRefGoogle ScholarPubMed
Razavi Zade, M, Telkabadi, MH, Bahmani, F, et al. (2016) The effects of DASH diet on weight loss and metabolic status in adults with non-alcoholic fatty liver disease: a randomized clinical trial. Liver Int 36, 563571.CrossRefGoogle ScholarPubMed
Food and Agriculture Organization of the United Nations (2015) Food-based dietary guidelines. https://www.fao.org/nutrition/education/food-dietary-guidelines/regions/iran/en/ (accessed January 2022).Google Scholar
Sharma, S & Fleming, SE (2012) Use of HbA1C testing to diagnose pre-diabetes in high risk African American children: a comparison with fasting glucose and HOMA-IR. Diabetes Metab Syndrome: Clin Res Rev 6, 157162.CrossRefGoogle ScholarPubMed
Katz, A, Nambi, SS, Mather, K, et al. (2000) Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 85, 24022410.CrossRefGoogle ScholarPubMed
Kurtz, A, Dubbins, P, Rubin, C, et al. (1981) Echogenicity: analysis, significance, and masking. Am J Roentgenol 137, 471476.CrossRefGoogle ScholarPubMed
Casadei, K & Kiel, J (2019) Anthropometric Measurement. Treasure Island, FL: StatPearls Publishing.Google Scholar
Ainsworth, BE, Haskell, WL, Whitt, MC, et al. (2000) Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 32, S498S504.CrossRefGoogle ScholarPubMed
Li, Y, Li, J, Su, Q, et al. (2019) Sinapine reduces non-alcoholic fatty liver disease in mice by modulating the composition of the gut microbiota. Food Funct 10, 36373649.CrossRefGoogle ScholarPubMed
Li, Y, Li, J, Cao, P, et al. (2020) Sinapine-enriched rapeseed oils reduced fatty liver formation in high-fat diet-fed C57BL/6J mice. RSC Adv 10, 2124821258.CrossRefGoogle ScholarPubMed
Foretz, M, Guichard, C, Ferré, P, et al. (1999) Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc Natl Acad Sci 96, 1273712742.CrossRefGoogle Scholar
Marx, N, Duez, H, Fruchart, JC, et al. (2004) Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells. Circ Res 94, 11681178.CrossRefGoogle ScholarPubMed
Kavyani, Z, Musazadeh, V, Fathi, S, et al. (2022) Efficacy of the n-3 fatty acids supplementation on inflammatory biomarkers: an umbrella meta-analysis. Int Immunopharmacol 111, 109104.CrossRefGoogle ScholarPubMed
Capanni, M, Calella, F, Biagini, M, et al. (2006) Prolonged n-3 polyunsaturated fatty acid supplementation ameliorates hepatic steatosis in patients with non-alcoholic fatty liver disease: a pilot study. Aliment Pharmacol Ther 23, 11431151.CrossRefGoogle ScholarPubMed
Musazadeh, V, Karimi, A, Malekahmadi, M, et al. (2023) n-3 polyunsaturated fatty acids in the treatment of non-alcoholic fatty liver disease: an umbrella systematic review and meta-analysis. Clin Exp Pharmacol Physiol 50, 327334.CrossRefGoogle Scholar
Hasan, KMM, Tamanna, N & Haque, MA (2018) Biochemical and histopathological profiling of Wistar rat treated with Brassica napus as a supplementary feed. Food Sci Hum Wellness 7, 7782.CrossRefGoogle Scholar
Sharif, IH, Tamanna, S, Mosaib, MG, et al. (2019) Assessment and biomonitoring of the effect of rapeseeds oil on wister rat organs. Am J Pure Appl Sci 1, 2029.Google Scholar
Gillingham, LG, Harris-Janz, S & Jones, PJ (2011) Dietary monounsaturated fatty acids are protective against metabolic syndrome and cardiovascular disease risk factors. Lipids 46, 209228.CrossRefGoogle ScholarPubMed
Södergren, E, Gustafsson, I, Basu, S, et al. (2001) A diet containing rapeseed oil-based fats does not increase lipid peroxidation in humans when compared to a diet rich in saturated fatty acids. Eur J Clin Nutr 55, 922931.CrossRefGoogle ScholarPubMed
Gustafsson, I-B, Vessby, B, Ohrvall, M, et al. (1994) A diet rich in monounsaturated rapeseed oil reduces the lipoprotein cholesterol concentration and increases the relative content of n-3 fatty acids in serum in hyperlipidemic subjects. Am J Clin Nutr 59, 667674.CrossRefGoogle Scholar
Imamura, F, Micha, R, Wu, JH, et al. (2016) Effects of saturated fat, polyunsaturated fat, monounsaturated fat, and carbohydrate on glucose-insulin homeostasis: a systematic review and meta-analysis of randomised controlled feeding trials. PLoS Med 13, e1002087.CrossRefGoogle ScholarPubMed
De Lorgeril, M, Salen, P, Martin, J-L, et al. (1999) Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation 99, 779785.CrossRefGoogle ScholarPubMed
Soriguer, F, Morcillo, S, Cardona, F, et al. (2006) Pro12Ala polymorphism of the PPARG2 gene is associated with type 2 diabetes mellitus and peripheral insulin sensitivity in a population with a high intake of oleic acid. J Nutr 136, 23252330.CrossRefGoogle Scholar
Amiri, M, Raeisi-Dehkordi, H, Sarrafzadegan, N, et al. (2020) The effects of Canola oil on cardiovascular risk factors: a systematic review and meta-analysis with dose-response analysis of controlled clinical trials. Nutr, Metab Cardiovasc Dis 30, 21332145.CrossRefGoogle ScholarPubMed
Engel, S & Tholstrup, T (2015) Butter increased total and LDL cholesterol compared with olive oil but resulted in higher HDL cholesterol compared with a habitual diet. Am J Clin Nutr 102, 309315.CrossRefGoogle ScholarPubMed
Heggen, E, Granlund, L, Pedersen, JI, et al. (2010) Plant sterols from rapeseed and tall oils: effects on lipids, fat-soluble vitamins and plant sterol concentrations. Nutr, Metab Cardiovasc Dis 20, 258265.CrossRefGoogle ScholarPubMed
Salar, A, Faghih, S & Pishdad, GR (2016) Rice bran oil and canola oil improve blood lipids compared to sunflower oil in women with type 2 diabetes: a randomized, single-blind, controlled trial. J Clin Lipidol 10, 299305.CrossRefGoogle ScholarPubMed
Raeisi-Dehkordi, H, Amiri, M, Humphries, KH, et al. (2019) The effect of canola oil on body weight and composition: a systematic review and meta-analysis of randomized controlled clinical trials. Adv Nutr 10, 419432.CrossRefGoogle ScholarPubMed
Martínez-Fernández, L, Laiglesia, LM, Huerta, AE, et al. (2015) n-3 fatty acids and adipose tissue function in obesity and metabolic syndrome. Prostaglandins Other Lipid Mediators 121, 2441.CrossRefGoogle ScholarPubMed
Buckley, JD & Howe, PR (2010) Long-chain n-3 polyunsaturated fatty acids may be beneficial for reducing obesity—a review. Nutrients 2, 12121230.CrossRefGoogle ScholarPubMed
Maljaars, J, Romeyn, EA, Haddeman, E, et al. (2009) Effect of fat saturation on satiety, hormone release, and food intake. Am J Clin Nutr 89, 10191024.CrossRefGoogle ScholarPubMed
Musazadeh, V, Dehghan, P & Khoshbaten, M (2022) Efficacy of n-3-rich Camelina sativa on the metabolic and clinical markers in nonalcoholic fatty liver disease: a randomized, controlled trial. Eur J Gastroenterol Hepatol 34, 537545.CrossRefGoogle Scholar
Farhangi, MA, Dehghan, P, Musazadeh, V, et al. (2022) Effectiveness of n-3 and prebiotics on adiponectin, leptin, liver enzymes lipid profile and anthropometric indices in patients with non-alcoholic fatty liver disease: a randomized controlled trial. J Funct Foods 92, 105074.CrossRefGoogle Scholar