Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-14T17:09:39.652Z Has data issue: false hasContentIssue false

High-dose cholecalciferol supplementation to obese infertile men is sufficient to reach adequate vitamin D status

Published online by Cambridge University Press:  09 October 2023

Rune Holt
Affiliation:
Group of Skeletal, Mineral and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark Department of Endocrinology and Internal Medicine, Copenhagen University Hospital – Herlev and Gentofte, Copenhagen, Denmark
Mads Joon Jorsal
Affiliation:
Group of Skeletal, Mineral and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark Department of Endocrinology and Internal Medicine, Copenhagen University Hospital – Herlev and Gentofte, Copenhagen, Denmark
Sam Kafai Yahyavi
Affiliation:
Group of Skeletal, Mineral and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark Department of Endocrinology and Internal Medicine, Copenhagen University Hospital – Herlev and Gentofte, Copenhagen, Denmark
Simeng Qin
Affiliation:
Group of Skeletal, Mineral and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark Department of Endocrinology and Internal Medicine, Copenhagen University Hospital – Herlev and Gentofte, Copenhagen, Denmark
Anders Juul
Affiliation:
Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Niels Jørgensen
Affiliation:
Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
Martin Blomberg Jensen*
Affiliation:
Group of Skeletal, Mineral and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark Department of Endocrinology and Internal Medicine, Copenhagen University Hospital – Herlev and Gentofte, Copenhagen, Denmark
*
*Corresponding author: Martin Blomberg Jensen, emails :martin.blomberg.jensen@regionh.dk, blombergjensen@gmail.com

Abstract

Obesity is associated with low vitamin D status, and the optimal supplement and dosage of cholecalciferol (vitamin D3) or calcidiol (25OHD) for individuals with obesity have been debated. We aimed to determine the effect of high-dose vitamin D3 supplementation on achieving adequate vitamin D levels among infertile men with normal weight v. obesity. Here, we present secondary end points from a single-centre, double-blinded, randomised clinical trial, comprising 307 infertile men randomised to active or placebo treatment for 150 days. Men in the active group initially received an oral bolus of 300 000 mg of vitamin D3, followed by daily supplementation with 1400 mg of vitamin D3 and 500 mg of calcium. Baseline BMI was listed as a predefined subgroup. At baseline, serum 25OHD was significantly higher in men with normal weight (BMI < 25 kg/m2) compared with men with overweight (BMI 25–30 kg/m2) and obesity (BMI > 30 kg/m2) (48 nmol/l v. 45 nmol/l and 39 nmol/l, respectively; P = 0·024). After the intervention, men with normal weight, overweight and obesity treated with vitamin D3 had a significantly higher serum 25OHD compared with corresponding placebo-treated men (BMI < 25 kg/m2: 92 nmol/l v. 53 nmol/l, BMI = 25–30 kg/m2: 87 nmol/l v. 49 nmol/l and BMI > 30 kg/m2: 85 nmol/l v. 48 nmol/l; P < 0·001 for all, respectively). In conclusion, we show that high-dose vitamin D3 supplementation to infertile men with obesity and low vitamin D status is sufficient to achieve adequate serum 25OHD levels.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Karampela, I, Sakelliou, A, Vallianou, N, et al. (2022) Vitamin D deficiency 2.0: an update on the current status worldwide. Clin Obes 10, 9297.Google Scholar
Karampela, I, Sakelliou, A, Vallianou, N, et al. (2021) Vitamin D and obesity: current evidence and controversies. Curr Obes Rep 10, 162180.CrossRefGoogle ScholarPubMed
Bouillon, R, Marcocci, C, Carmeliet, G, et al. (2019) Skeletal and extraskeletal actions of vitamin D: current evidence and outstanding questions. Endocr Rev 40, 11091151.CrossRefGoogle ScholarPubMed
Wimalawansa, SJ (2018) Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and metabolic syndrome. J Steroid Biochem Mol Biol 175, 177189.CrossRefGoogle ScholarPubMed
McCarthy, K, Laird, E, O’Halloran, AM, et al. (2022) Association between vitamin D deficiency and the risk of prevalent type 2 diabetes and incident prediabetes: a prospective cohort study using data from The Irish Longitudinal Study on Ageing (TILDA). eClinicalMedicine 53, 114.CrossRefGoogle ScholarPubMed
Cosentino, N, Campodonico, J, Milazzo, V, et al. (2021) Vitamin D and cardiovascular disease: current evidence and future perspectives. Nutrients 13, 3603.CrossRefGoogle ScholarPubMed
Pereda, CA & Nishishinya, MB (2022) Optimal dosage of vitamin D supplementation in obese patients with low serum levels of 25-Hydroxyvitamin D. A systematic review. Obes Med 29, 100381.CrossRefGoogle Scholar
Ferlin, A, Selice, R, Di Mambro, A, et al. (2015) Role of vitamin D levels and vitamin D supplementation on bone mineral density in Klinefelter syndrome. Osteoporos Int 26, 21932202.CrossRefGoogle Scholar
Foresta, C, Calogero, AE, Lombardo, F, et al. (2015) Late-onset hypogonadism: beyond testosterone. Asian J Androl 17, 236238.CrossRefGoogle ScholarPubMed
Blomberg Jensen, M, Gerner Lawaetz, J, Petersen, JH, et al. (2018) Effects of Vitamin D supplementation on semen quality, reproductive hormones, and live birth rate: a randomized clinical trial. J Clin Endocrinol Metab 103, 870881.CrossRefGoogle ScholarPubMed
Kumari, S, Singh, K, Kumari, S, et al. (2021) Association of vitamin D and reproductive hormones with semen parameters in infertile men. Cureus 13, 110.Google ScholarPubMed
Holt, R, Petersen, JH, Dinsdale, E, et al. (2022) Vitamin D supplementation improves fasting insulin levels and HDL cholesterol in infertile men. J Clin Endocrinol Metab 107, 98108.CrossRefGoogle ScholarPubMed
Holt, R, Yahyavi, SK, Kooij, I, et al. (2023) Low serum anti-Müllerian hormone is associated with semen quality in infertile men and not influenced by vitamin D supplementation. BMC Med 21, 79.CrossRefGoogle Scholar
Effects of vitamin D on sex steroids, luteinizing hormone, and testosterone to luteinizing hormone ratio in 307 infertile men. https://doi.org/10.1111/andr.13505 CrossRefGoogle Scholar
Thacher, TD & Clarke, BL (2011) Vitamin D insufficiency. Mayo Clin Proc 86, 5060.CrossRefGoogle ScholarPubMed
Jensen, MB, Lawaetz, JG, Andersson, AM, et al. (2016) Vitamin D deficiency and low ionized calcium are linked with semen quality and sex steroid levels in infertile men. Hum Reprod 31, 18751885.CrossRefGoogle Scholar
Lips, P, Binkley, N, Pfeifer, M, et al. (2010) Once-weekly dose of 8400 mg vitamin D3 compared with placebo: effects on neuromuscular function and tolerability in older adults with vitamin D insufficiency. Am J Clin Nutr 91, 985991.CrossRefGoogle ScholarPubMed
Hollis, BW & Wagner, CL (2013) The role of the parent compound vitamin D with respect to metabolism and function: why clinical dose intervals can affect clinical outcomes. J Clin Endocrinol Metab 98, 46194628.CrossRefGoogle ScholarPubMed
Jones, KS, Assar, S, Harnpanich, D, et al. (2014) 25(OH)D2half-life is shorter than 25(OH)D3half-life and is influenced by DBP concentration and genotype. J Clin Endocrinol Metab 99, 33733381.CrossRefGoogle Scholar
Didriksen, A, Burild, A, Jakobsen, J, et al. (2015) Vitamin D3 increases in abdominal subcutaneous fat tissue after supplementation with vitamin D3 . Eur J Endocrinol 172, 235241.CrossRefGoogle ScholarPubMed
Camozzi, V, Frigo, AC, Zaninotto, M, et al. (2016) 25-Hydroxycholecalciferol response to single oral cholecalciferol loading in the normal weight, overweight, and obese. Osteoporos Int 27, 25932602.CrossRefGoogle ScholarPubMed
Wamberg, L, Christiansen, T, Paulsen, SK, et al. (2013) Expression of vitamin D-metabolizing enzymes in human adipose tissue – the effect of obesity and diet-induced weight loss. Int J Obes 37, 651657.CrossRefGoogle ScholarPubMed
Roizen, JD, Long, C, Casella, A, et al. (2019) Obesity decreases hepatic 25-hydroxylase activity causing low serum 25-hydroxyvitamin D. J Bone Miner Res 34, 10681073.CrossRefGoogle ScholarPubMed
Elkhwanky, M, Kummu, O, Piltonen, TT, et al. (2020) Obesity represses CYP2R1, the vitamin D 25-hydroxylase, in the liver and extrahepatic tissues. JBMR Plus 4, 114.CrossRefGoogle ScholarPubMed
Pivonello, R, Menafra, D, Riccio, E, et al. (2019) Metabolic disorders and male hypogonadotropic hypogonadism. Front Endocrinol 10, 113.CrossRefGoogle ScholarPubMed
Sadideen, H & Swaminathan, R (2004) Effect of acute oral calcium load on serum PTH and bone resorption in young healthy subjects: an overnight study. Eur J Clin Nutr 58, 16611665.CrossRefGoogle ScholarPubMed
Meyer, MB, Lee, SM, Carlson, AH, et al. (2019) A chromatin-based mechanism controls differential regulation of the cytochrome P450 gene Cyp24a1 in renal and non-renal tissues. J Biol Chem 294, 1446714481.CrossRefGoogle ScholarPubMed
Brandtner, EM, Muendlein, A, Leiherer, A, et al. (2020) Serum parathyroid hormone predicts mortality in coronary angiography patients with type 2 diabetes. J Clin Endocrinol Metab 105, 18.CrossRefGoogle ScholarPubMed