Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-09T07:18:27.388Z Has data issue: false hasContentIssue false

Absorption of homocitrulline from the gastrointestinal tract

Published online by Cambridge University Press:  09 March 2007

D. F. Evered
Affiliation:
Department of Biochemistry, Chelsea College, University of London, Manresa Road, London SW3 6LX
J. V. Vadgama
Affiliation:
Department of Biochemistry, Chelsea College, University of London, Manresa Road, London SW3 6LX
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Transport of L-homocitrulline, an amino acid which occurs in milk products, was studied with rat small intestine in vitro and from the human mouth in vivo. Absorption was partially dependent, in both systems, on the presence of sodium ions.

2. Metabolic inhibitors decreased L-homocitrulline uptake across the small intestine. Transport across the intestine did not occur against the concentration gradient but did show saturation kinetics.

3. The barbiturate, amytal, did not inhibit buccal absorption. Saturation kinetics were demonstrated.

4. Experiments were conducted with L-citrulline, or other amino acids, as possible inhibitors of L-homocitrulline transport. Results were compatible with Na+-dependent carrier-mediated uptake across the buccal mucosa. Active transport could be involved with the small intestine assuming that L-homocitrulline has a low affinity for the carrier system.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1983

References

Asatoor, A. M., Lacey, B. W., London, D. R. & Milne, M. D. (1962). Clin. Sci. 23, 285.Google Scholar
Crane, R. K. (1968). In Handbook of Physiology, p. 1323 [C.F., Code, W., Heidel, editors]. Washington, DC: American Physiology Society.Google Scholar
Eastoe, J. E. (1961). In Biochemist's Handbook, p. 907 [C., Long, editor]. London: Spon.Google Scholar
Evered, D. F. & Sadoogh-Abasian, F. (1979). Br. J. Nutr. 41, 47.CrossRefGoogle Scholar
Evered, D. F., Sadoogh-Abasian, F. & Patel, P. D. (1981). Life Sci. 27, 1649.CrossRefGoogle Scholar
Gerritsen, T., Lipton, S. H., Strong, F. M. & Waisman, H. A. (1961). Biochem. Biophys. Res. Commun. 4, 379.CrossRefGoogle Scholar
Gerritsen, T., Vaughn, J. G. & Waisman, H. A. (1963). Archs Biochem. Biophys. 100, 298.CrossRefGoogle Scholar
Gerritsen, T., Waisman, H. A., Lipton, S. H. & Strong, F. M. (1962). Archs Biochem. Biophys. 97, 34.CrossRefGoogle Scholar
Jalling, O., Lindberg, O. & Ernster, L. (1955). Acta Chem. Scand. 9, 198.CrossRefGoogle Scholar
Lerner, J. (1978). A Review of Amino Acid Transport Processes in Animal Cells and Tissues, p. 10. University of Maine: Orono Press.Google Scholar
Lineweaver, H. & Burk, D. (1934). J. Am. chem. Soc. 56, 658.CrossRefGoogle Scholar
Manning, A. S. & Evered, D. F. (1976). Clin. Sci. Mol. Med. 51, 127.Google Scholar
Newey, H. & Smyth, D. H. (1964). J. Physiol., Lond. 170, 328.CrossRefGoogle Scholar
Prescott, L. M. & Jones, N. E. (1969). Analyt. Biochem. 32, 408.CrossRefGoogle Scholar
Sadoogh-Abasian, F. & Evered, D. F. (1979). Br. J. Nutr. 42, 15.CrossRefGoogle Scholar
Sadoogh-Abasian, F. & Evered, D. F. (1980). Biochim. biophys. Acta 598, 385.CrossRefGoogle Scholar
Shih, V. E., Efron, M. L. & Moser, H. W. (1969). Am. J. Dis. Child. 117, 83.CrossRefGoogle Scholar
Smith, I. & Seakins, J. W. T. (1976). Chromatographic and Electrophoretic Techniques, vol. 1, 4th ed. p. 75. London: Heinemann.Google Scholar
Sprake, S. A. & Evered, D. F. (1979). J. Pharm. Pharmac. 31, 113.CrossRefGoogle Scholar
Wass, M. & Evered, D. F. (1971). Life Sci. 10, 1005.CrossRefGoogle Scholar
White, H. H. (1968). Clinica chim. Acta 21, 297.CrossRefGoogle Scholar
Whittembury, G. (1968). J. gen. Physiol. 51, 303.CrossRefGoogle Scholar