Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-12T08:21:19.473Z Has data issue: false hasContentIssue false

The alleviation of chronic copper toxicity in sheep by ciliate protozoa*

Published online by Cambridge University Press:  09 March 2007

M. Ivan
Affiliation:
Animal Research Centre, Agriculture Canada, Ottawa, Ontario K1A 0C6, Canada
D. M. Veira
Affiliation:
Animal Research Centre, Agriculture Canada, Ottawa, Ontario K1A 0C6, Canada
C. A. Kelleher
Affiliation:
Animal Research Centre, Agriculture Canada, Ottawa, Ontario K1A 0C6, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Rams, fauna-free from birth and initially of 48–65 kg live weight, were allocated to two groups of ten each and given a diet containing 14 μg copper/g dry matter; five additional rams were killed and their livers were analysed for Cu.

2. One group (faunated) was inoculated with a mixed population of ciliate protozoa, and contained between 60x105 and 195 x 105 protozoa/ml rumen fluid throughout the 184 d experiment. The other group remained fauna-free. Following blood sampling, three rams in each group were killed on day 63, two on day 125 and four on day 184. One sheep in each group died during the experiment.

3. Faunated rams showed higher weight gains and feed consumption than fauna-free rams.

4. Plasma Cu concentration (μg/ml) increased from an initial 0.82to a final 1.00 in faunated and 1.36 in fauna-free rams. Liver Cu concentration (μg/g dry matter) increased from an initial 745 to a final 962 and 1684 in faunated and in fauna-free sheep respectively, representing a 4.3-fold greater increase in the fauna-free than in the faunated group. The absorption and retention of Cu was 38–50% higher in the fauna-free than in the faunated rams.

5. It was suggested that rumen ciliate protozoa increased rumen production of sulphide (through increased breakdown of soluble proteins) which complexed part of the Cu, making it unavailable for absorption and utilization. Therefore, ciliate protozoa could determine susceptibility to chronic Cu toxicity in sheep.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Abou Akkada, A. R. & el-Shazly, K. (1964). Applied Microbiology 12, 384390.CrossRefGoogle Scholar
Beever, D. E., Thompson, D. J. & Camell, S. B. (1976). Journal of Agricultural Science, Cambridge 86, 443452.CrossRefGoogle Scholar
Bird, S. H., Hill, M. K. & Leng, R. A. (1979). British Journal of Nutrition 42, 8187.CrossRefGoogle Scholar
Bird, S. H. & Leng, R. A. (1978). British Journal of Nutrition 40, 163167.CrossRefGoogle Scholar
Bostwick, J. L. (1982). Journal of American Veterinary Medical Association 180, 386387.Google Scholar
Christiansen, W. C., Kawashima, R. & Burroughs, W. (1965). Journal of Animal Science 24, 730734.CrossRefGoogle Scholar
Conrad, H. R., Hibbs, J. W., Pounden, W. D. & Sutton, T. S. (1950). Journal of Dairy Science 33, 585592.CrossRefGoogle Scholar
Durand, M. & Kawashima, R. (1979). In Digestive Physiology and Metabolism in Ruminants, pp. 375408 [Ruckebusch, Y. and Thivend, P., editors]. Lancaster: MTP Press Ltd.Google Scholar
Hartmans, J. & Bosman, M. S. M. (1970). In Proceedings of WAAP/IBP Infernational Symposium on Trace Element Metabolism in Animals, pp. 362366 [Mills, C.F., editor]. Edinburgh: E. & S. Livingstone.Google Scholar
Heaney, D. P., Hartin, K., Shrestha, J. N. B., Ainsworth, L. & Langford, G.A. (1981). Journal of Animal Science 53, Suppl. 1, 181Abstr.Google Scholar
Hidiroglou, M., Heaney, D. P. & Hartin, K. E. (1984). Canadian Veterinary Journal 25, 377382.Google Scholar
Hume, I. (1974). Australian Journal of Agricultural Research 25, 155165.CrossRefGoogle Scholar
Ikwuegbu, O. A. & Sutton, J. D. (1982). British Journal of Nutrition 48, 365375.CrossRefGoogle Scholar
Ivan, M. & Veira, D. M. (1981). Canadian Journal of Animal Science 61, 955959.CrossRefGoogle Scholar
Jouany, J. P., Zinab, B., Senaud, J., Groliëre, C. A., Grain, J. & Thivend, P. (1981). Reproduction, Nutrition, Développement 21, 871884.CrossRefGoogle Scholar
Klopfenstein, T. J., Purser, D. B. & Tyznik, W.J. (1966). Journal of Animal Science 25, 765773.CrossRefGoogle Scholar
Mason, J., Lamand, M. & Kelleher, C. A. (1980). British Journal of Nutrition 43, 515523.CrossRefGoogle Scholar
Schosinsky, K. H., Lehmann, H. P. & Beller, M. F (1974). Clinical Chemistry 20 15561563.CrossRefGoogle Scholar
Ushida, K., Jouany, J. P., Lassalas, B. & Thivend, P. (1984). Canadian Journal of Animal Science 64, Suppl., 2021.CrossRefGoogle Scholar
Veira, D. M., Ivan, M. & Jui, P. Y. (1983). Journal of Dairy Science 66 10151022.CrossRefGoogle Scholar
Veira, D. M., Ivan, M. & Jui, P. Y. (1984). Canadian Journal of Animal Science 64 Suppl., 2223.CrossRefGoogle Scholar
Ward, G. M. (1978). Journal of Animal Science 46, 10781085.CrossRefGoogle Scholar
Whitelaw, F. G., Eadie, J. M., Bruce, L. A. & Shand, W. J. (1984). British Journal of Nutrition 52, 261275.CrossRefGoogle Scholar