Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-07T21:24:31.806Z Has data issue: false hasContentIssue false

Association of sarcopenia with rapid kidney function decline and chronic kidney disease in adults with normal kidney function

Published online by Cambridge University Press:  16 October 2023

Xiaowei Zheng*
Affiliation:
Public Health Research Center and Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic of China
Xiao Ren
Affiliation:
Public Health Research Center and Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic of China
Minglan Jiang
Affiliation:
Public Health Research Center and Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic of China
Longyang Han
Affiliation:
Public Health Research Center and Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic of China
Chongke Zhong*
Affiliation:
Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215000, People’s Republic of China
*
*Corresponding authors: Xiaowei Zheng, email zxw19921212@163.com; Chongke Zhong, email ckzhong@suda.edu.cn
*Corresponding authors: Xiaowei Zheng, email zxw19921212@163.com; Chongke Zhong, email ckzhong@suda.edu.cn

Abstract

The association between sarcopenia and kidney function remains poorly investigated. We aimed to evaluate the associations between sarcopenia status and kidney function (rapid kidney function decline and chronic kidney disease (CKD)) in middle-aged and older Chinese population. A total of 9375 participants from the China Health and Retirement Longitudinal Study 2011 were included in the cross-sectional analyses. A total of 5864 participants with eGFRcr-cys ≥ 60 ml/min per 1·73 m2 at baseline were included in the longitudinal analyses and were followed up in 2015. Sarcopenia status was defined according to the Asian Working Group for Sarcopenia 2019 criteria. In the cross-sectional analyses, possible sarcopenia and sarcopenia were significantly associated with an increased risk of CKD. During the 4 years of follow-up, 359 (6·12 %) participants experienced rapid decline in kidney function and 126 (2·15 %) participants developed CKD. After multivariable adjustment of baseline eGFRcr-cys level and other risk factors, possible sarcopenia (OR, 1·33; 95 % CI 1·01, 2·12) and sarcopenia (OR, 1·49; 95 % CI 1·05, 2·12) were associated with an increased risk of primary outcome (composite of rapid decline in kidney function (annualised decline in eGFRcr-cys ≥ 5 ml/min per 1·73 m2) and progression to CKD (eGFRcr-cys < 60 ml/min per 1·73 m2). Individuals with low muscle mass or low muscle strength alone also had an increased risk of rapid decline in kidney function and progression to CKD.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jha, V, Garcia-Garcia, G, Iseki, K, et al. (2013) Chronic kidney disease: global dimension and perspectives. Lancet 382, 260272.CrossRefGoogle Scholar
Kalantar-Zadeh, K, Jafar, TH, Nitsch, D, et al. (2021) Chronic kidney disease. Lancet 398, 786802.CrossRefGoogle ScholarPubMed
Xie, Y, Bowe, B, Mokdad, AH, et al. (2018) Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. Kidney Int 94, 567581.CrossRefGoogle ScholarPubMed
Petermann-Rocha, F, Balntzi, V, Gray, SR, et al. (2022) Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia, Sarcopenia Muscle 13, 8699.CrossRefGoogle ScholarPubMed
GBD Chronic Kidney Disease Collaboration (2020) Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709733.CrossRefGoogle Scholar
James, MT, Hemmelgarn, BR & Tonelli, M (2010) Early recognition and prevention of chronic kidney disease. Lancet 375, 12961309.CrossRefGoogle ScholarPubMed
Fox, CS, Matsushita, K, Woodward, M, et al. (2012) Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet 380, 16621673.CrossRefGoogle ScholarPubMed
Afkarian, M, Sachs, MC, Kestenbaum, B, et al. (2013) Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol: JASN 24, 302308.CrossRefGoogle ScholarPubMed
Cruz-Jentoft, AJ & Sayer, AA (2019) Sarcopenia. Lancet 393, 26362646.CrossRefGoogle ScholarPubMed
Bauer, J, Morley, JE, Schols, A, et al. (2019) Sarcopenia: a time for action. An SCWD position paper. J Cachexia, Sarcopenia Muscle 10, 956961.CrossRefGoogle ScholarPubMed
Kitamura, A, Seino, S, Abe, T, et al. (2021) Sarcopenia: prevalence, associated factors, and the risk of mortality and disability in Japanese older adults. J Cachexia, Sarcopenia Muscle 12, 3038.CrossRefGoogle ScholarPubMed
Chen, LK, Woo, J, Assantachai, P, et al. (2020) Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Directors Assoc 21, 300307.e2.CrossRefGoogle Scholar
Chen, LK, Liu, LK, Woo, J, et al. (2014) Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Directors Assoc 15, 95101.CrossRefGoogle ScholarPubMed
Zhang, X, Huang, P, Dou, Q, et al. (2020) Falls among older adults with sarcopenia dwelling in nursing home or community: a meta-analysis. Clin Nutr 39, 3339.CrossRefGoogle ScholarPubMed
Han, P, Chen, X, Yu, X, et al. (2020) The predictive value of sarcopenia and its individual criteria for cardiovascular and all-cause mortality in suburb-dwelling older Chinese. J Nutr Heath Aging 24, 765771.CrossRefGoogle ScholarPubMed
Takenaka, Y, Oya, R, Takemoto, N, et al. (2021) Predictive impact of sarcopenia in solid cancers treated with immune checkpoint inhibitors: a meta-analysis. J Cachexia, Sarcopenia Muscle 12, 11221135.CrossRefGoogle ScholarPubMed
Wilkinson, TJ, Miksza, J, Yates, T, et al. (2021) Association of sarcopenia with mortality and end-stage renal disease in those with chronic kidney disease: a UK Biobank study. J Cachexia, Sarcopenia Muscle 12, 586598.CrossRefGoogle ScholarPubMed
Hanatani, S, Izumiya, Y, Onoue, Y, et al. (2018) Non-invasive testing for sarcopenia predicts future cardiovascular events in patients with chronic kidney disease. Int J Cardiol 268, 216221.CrossRefGoogle ScholarPubMed
Androga, L, Sharma, D, Amodu, A, et al. (2017) obesity, and mortality in US adults with and without chronic kidney disease. Kidney Int Rep 2, 201211.CrossRefGoogle ScholarPubMed
Lee, YL, Jin, H, Lim, JY, et al. (2021) Relationship between low handgrip strength and chronic kidney disease: KNHANES 2014–2017. J Renal Nutr: Offic J Council Renal Nutr Natl Kidney Found 31, 5763.CrossRefGoogle Scholar
Yan, J, Zheng, K, Lin, C, et al. (2020) Correlation between sarcopenia and albuminuria in patients with type 2 diabetes. Nan fang yi ke da xue xue bao = J S Med University 40, 407412.Google ScholarPubMed
Ishii, S, Tanaka, T, Shibasaki, K, et al. (2014) Development of a simple screening test for sarcopenia in older adults. Geriatr Gerontol Int 1, 93101.CrossRefGoogle Scholar
Cruz-Jentoft, AJ, Baeyens, JP, Bauer, JM, et al. (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Age 39, 412423.CrossRefGoogle ScholarPubMed
Zhao, Y, Hu, Y, Smith, JP, et al. (2014) Cohort profile: the China Health and Retirement Longitudinal Study (CHARLS). Int J Epidemiol 43, 6168.CrossRefGoogle ScholarPubMed
Wen, X, Wang, M, Jiang, CM, et al. (2011) Anthropometric equation for estimation of appendicular skeletal muscle mass in Chinese adults. Asia Pac J Clin Nutr 20, 551556.Google ScholarPubMed
Wu, X, Li, X, Xu, M, et al. (2021) Sarcopenia prevalence and associated factors among older Chinese population: findings from the China Health and Retirement Longitudinal Study. PLoS One 16, e0247617.CrossRefGoogle ScholarPubMed
Inker, LA, Astor, BC, Fox, CH, et al. (2014) KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis: Offic J Natl Kidney Found 63, 713735.CrossRefGoogle ScholarPubMed
Inker, LA, Schmid, CH, Tighiouart, H, et al. (2012) Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 367, 2029.CrossRefGoogle ScholarPubMed
Sabatino, A, Cuppari, L, Stenvinkel, P, et al. (2021) Sarcopenia in chronic kidney disease: what have we learned so far? J Nephrol 34, 13471372.CrossRefGoogle ScholarPubMed
Ribeiro, HS, Neri, SGR, Oliveira, JS, et al. (2022) Association between sarcopenia and clinical outcomes in chronic kidney disease patients: a systematic review and meta-analysis. Clin Nutr 41, 11311140.CrossRefGoogle ScholarPubMed
Gao, K, Cao, LF, Ma, WZ, et al. (2022) Association between sarcopenia and cardiovascular disease among middle-aged and older adults: findings from the China health and retirement longitudinal study. EClinicalMedicine 44, 101264.CrossRefGoogle ScholarPubMed
Low, S, Pek, S, Moh, A, et al. (2021) Low muscle mass is associated with progression of chronic kidney disease and albuminuria - an 8-year longitudinal study in Asians with Type 2 Diabetes. Diabetes Res Clin Pract 174, 108777.CrossRefGoogle ScholarPubMed
Moon, SJ, Kim, TH, Yoon, SY, et al. (2015) Relationship between stage of chronic kidney disease and sarcopenia in Korean aged 40 years and older using the Korea National Health and Nutrition Examination Surveys (KNHANES IV-2, 3, and V-1, 2), 2008–2011. PLoS One 10, e0130740.CrossRefGoogle ScholarPubMed
Lee, MR, Jung, SM, Kim, HS, et al. (2018) Association of muscle strength with cardiovascular risk in Korean adults: findings from the Korea National Health and Nutrition Examination Survey (KNHANES) VI to VII (2014–2016). Medicine 97, e13240.CrossRefGoogle Scholar
Kara, M, Kara, Ö, Ceran, Y, et al. (2023) SARcopenia assessment in hypertension: the SARAH study. Am J Phys Med Rehabil 102, 130136.CrossRefGoogle ScholarPubMed
Kitada, M, Ogura, Y, Monno, I, et al. (2018) a low-protein diet for diabetic kidney disease: its effect and molecular mechanism, an approach from animal studies. Nutrients 10, 544.CrossRefGoogle ScholarPubMed
Pryzbek, M, MacDonald, M, Stratford, P, et al. (2019) Long-term enrollment in cardiac rehabilitation benefits cardiorespiratory fitness and skeletal muscle strength in men with cardiovascular disease. Can J Cardiol 35, 13591365.CrossRefGoogle ScholarPubMed
Groop, PH, Forsblom, C & Thomas, MC (2005) Mechanisms of disease: pathway-selective insulin resistance and microvascular complications of diabetes. Nat Clin Pract Endocrinol Metab 1, 100110.CrossRefGoogle ScholarPubMed
Supplementary material: File

Zheng et al. supplementary material

Zheng et al. supplementary material
Download Zheng et al. supplementary material(File)
File 30 KB