Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-12T07:25:26.817Z Has data issue: false hasContentIssue false

Concurrent studies on the flow of digesta in the duodenum and of exocrine pancreatic secretion of calves

The collection of the exocrine pancreatic secretion from a duodenal cannula

Published online by Cambridge University Press:  09 March 2007

J. H. Ternouth
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
H. L. Buttle
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Two surgical techniques were developed in the calf to study the role of pancreatic secretion in digestion. The secretion was collected through a cannula placed in a small sac of duodenum into which the pancreatic duct drained. The continuity of the duodenum was re-established in the first technique by duodenal re-entrant cannulas, and in the second technique by end-to-end anastomosis of the duodenum with a cannula placed cranial to the anastomosis to return the pancreatic secretion. The accessory pancreatic duct was ligated.

2. The flows of digesta through the duodenum of milk-fed calves were 5505, 6369 and 7709 ml/12 h at 7, 24 and 63 d of age respectively, similar to values reported previously in the literature. In a 12 h collection period 297, 441 and 602 ml pancreatic fluid were secreted by calves of 7, 24 and 63 d of age respectively. The secretion from the mucosa of the duodenal sac was 40 ml/12 h in two other calves.

3. The rate of secretion from the pancreas varied markedly in milk-fed calves, being lowest 2–3 h and highest 6–10 h after feeding. Changes in the concentration of chloride and bicarbonate with pancreatic secretion rate were indicative of a secretin stimulus to secretion.

4. The rates of inactivation of pancreatic enzymes collected from the duodenal sac were measured at 4°, 20° and 39°.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1973

References

REFERENCES

Aliev, A. A. (1966). Modern methods of operating on entire animals in studying the digestive and intermediate exchange substances of ruminants. Thesis. Vses. Nauch.-Issled. Inst. Fiz. Biokhim. Sel: khoz. Zhiv., Moscow.Google Scholar
Annis, D. & Hallenbeck, G. A. (1951). Proc. Soc. exp. Biol. Med. 77, 383.Google Scholar
Aschaffenburg, R. (1949). Br. J. Nutr. 3, 200.Google Scholar
Aust, S. D. & Cook, R. M. (1968). J. Anim. Sci. 27, 1160.Google Scholar
Bayliss, W. M. & Starling, E. H. (1902). J. Physiol., Lond. 28, 325.CrossRefGoogle Scholar
Clary, J. J., Mitchell, G. E. Jr, Little, C. O. & Bradley, N. W. (1969). Can. J. Physiol. Pharmac. 47, 161.CrossRefGoogle Scholar
Cooke, A. R., Nahnvold, D. L. & Grossman, M. I. (1967). Am. J. Physiol. 213, 637.Google Scholar
Dukes, H. H. (1955). The Physiology of Domestic Animals, 7th ed. London: Bailliàre, Tindall and Cox.Google Scholar
Dragstedt, L. R., Montgomery, M. L. & Ellis, J. C. (1930–1). Proc. Soc. exp. Biol. Med. 28, 109.Google Scholar
Gorrill, A. D. L., Thomas, J. W., Stewart, W. E. & Morrill, J. L. (1967). J. Nutr. 9, 86.Google Scholar
Greene, L. J., Hirs, C. H. W. & Palade, G. E. (1963). J. biol. Chem. 238, 2054.CrossRefGoogle Scholar
Grossman, M. I. (1958). Vitams. Horm. 16, 179.CrossRefGoogle Scholar
Hallenbeck, G. A. (1967). In Handbook of Physiology. Sect. 6: Alimentary Canal, p. 1007 [CodeC., F, editor]. Washington, DC: American Physiological Society.Google Scholar
Harrison, F. A. & Hill, K. J. (1962). J. Physiol., Lond. 162, 225.Google Scholar
Herrera, F., Kemp, D. R., Tsukamoto, M., Woodward, E. R. & Dragstedt, L. R. (1968). J. appl. Physiol. 25, 207.Google Scholar
Khayat, M. H. & Christophe, J. (1969). Am. J. Physiol. 217, 923.Google Scholar
McCormick, R. J. & Stewart, W. E. (1967). J. Dairy Sci. 50, 568.Google Scholar
Magee, D. F. (1961). J. Physiol., Lond. 158, 132.Google Scholar
Markowitz, J., Archibald, J. & Downie, H. G. (1964). Experimental Surgery, 5th ed. Baltimore: Williams & Wilkins.Google Scholar
Pekas, J. C. (1965). J. appl. Physiol. 20, 1082.CrossRefGoogle Scholar
Pelot, D. & Grossman, M. I. (1962). Am. J. Physiol. 202, 285.CrossRefGoogle Scholar
Schingoethe, D. J., Gorrill, A. D. L., Thomas, J. W. & Yang, M. G. (1970). Can. J. Physiol. Pharmac. 48, 43.CrossRefGoogle Scholar
Sineshchekov, A. D. (1963). In Physiology of Digestion in the Ruminant, p. 254 [Dougherty, R. W., editor]. London: Butterworths.Google Scholar
Sisson, S. & Grossman, J. D. (1956). The Anatomy of Domestic Animals, 4th cd. Philadelphia: Saunders.Google Scholar
Tagari, H. & Roy, J. H. B. (1969). Br. J. Nutr. 23, 763.CrossRefGoogle Scholar
Taylor, R. B. (1962). Res. vet. Sci. 3, 63.CrossRefGoogle Scholar
Ternouth, J. H. (1971). Studies of the role of the abomasum and pancreas in digestion in the young calf. PhD Thesis, University of Reading.Google Scholar
Ternouth, J. H., Siddons, R. C. & Toothill, J. (1971). Proc. Nutr. Soc. 30, 89A.Google Scholar
Thomas, J. E. (1950). The External Secretion of the Pancreas. Illinois: C. C. Thomas.Google Scholar
Varley, H. (1967). Practical Clinical Biochemistry. London: Heinemann.Google Scholar
Wass, W. M. (1965 a). Am. J. vet. Rcs. 26, 267.Google Scholar
Wass, W. M. (1965 b). Am. J. vet. Res. 26, 1103.Google Scholar
Zherebtsov, P. I. & Serykh, M. M. (1962). Izv. timiryazev. sel'-khoz. Akad. no. 4, p. 214.Google Scholar