Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-07T05:18:12.141Z Has data issue: false hasContentIssue false

Dietary polyamine intake and all-cause and cause-specific mortality in Japanese adults in the Takayama study

Published online by Cambridge University Press:  15 November 2023

Chisato Nagata*
Affiliation:
Department of Epidemiology & Preventive Medicine, Gifu University, Graduate School of Medicine, Gifu, Japan
Keiko Wada
Affiliation:
Department of Epidemiology & Preventive Medicine, Gifu University, Graduate School of Medicine, Gifu, Japan
Michiyo Yamakawa
Affiliation:
Department of Epidemiology & Preventive Medicine, Gifu University, Graduate School of Medicine, Gifu, Japan
Yuma Nakashima
Affiliation:
Department of Epidemiology & Preventive Medicine, Gifu University, Graduate School of Medicine, Gifu, Japan
Masaaki Sugino
Affiliation:
Department of Epidemiology & Preventive Medicine, Gifu University, Graduate School of Medicine, Gifu, Japan
Tomoka Mori
Affiliation:
Department of Epidemiology & Preventive Medicine, Gifu University, Graduate School of Medicine, Gifu, Japan
*
*Corresponding author: Dr C. Nagata, fax +81 58 230 6413, email nagata.chisato.g8@f.gifu-u.ac.jp

Abstract

Epidemiological studies on the potential health effects of dietary polyamines are scarce. The present study aimed to estimate habitual intake of polyamines (putrescine, spermidine and spermine) and examine whether spermidine intake is inversely associated with all-cause and cause-specific mortality in a population-based cohort study in Japan. The study included 13 355 men and 15 724 women aged 35 years and older. Diet was assessed via a validated FFQ at the baseline in 1992. The intake of polyamines was estimated mainly using databases of polyamine content in foods consumed among Japanese population. Sex-specific hazard ratios (HR) and 95 % CI for all-cause and cause-specific mortality were estimated according to polyamine quartiles. During 16 years of follow-up, 2901 deaths in men and 2438 in women occurred. The intake of any polyamine was not significantly associated with all-cause or cause-specific mortality after controlling for covariates in men and women. There was a suggestive positive association between spermidine intake and cancer mortality in women: HR for the highest v. lowest quartile were 1·38 (95 % CI (0·99, 1·93); Ptrend = 0·02). Our results did not provide support for the notion that dietary spermidine has beneficial effects on mortality. Further studies on dietary polyamines and longevity, as well as the morbidity of specific diseases, including cancer, are needed across populations with different dietary habits.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pegg, AE (2016) Functions of polyamines in mammals. J Biol Chem 291, 1490414912.Google Scholar
Munoz-Esparza, NC, Latorre-Moratalla, ML, Comas-Baste, O, et al. (2019) Polyamines in food. Front Nutr 6, 108.Google Scholar
Sagar, NA, Tarafdar, S, Agarwal, S, et al. (2021) Polyamines: functions, metabolism, and role in human disease management. Med Sci 9, 44.Google Scholar
Eisenberg, T, Abdellatif, M, Schroeder, S, et al. (2016) Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med 22, 14281438.Google Scholar
Eisenberg, T, Abdellatif, M, Zimmermann, A, et al. (2017) Dietary spermidine for lowering high blood pressure. Autophagy 13, 767769.Google Scholar
Madeo, F, Eisenberg, T, Pietrocola, F, et al. (2018) Spermidine in health and disease. Science 359, eaan2788.Google Scholar
Novita Sari, I, Setiawan, T, Seock Kim, K, et al. (2021) Metabolism and function of polyamines in cancer progression. Cancer Lett 519, 91104.Google Scholar
Yue, F, Li, W, Zou, J, et al. (2017) Spermidine prolongs lifespan and prevents liver fibrosis and hepatocellular carcinoma by activating MAP1S-mdiated autophagy. Cancer Res 77, 29382951.CrossRefGoogle ScholarPubMed
Miao, H, Ou, J, Peng, Y, et al. (2016) Macrophage ABHD5 promotes colorectal cancer growth by suppressing spermidine production by SRM. Nat Commun 7, 11716.Google Scholar
Al-Habsi, M, Chamoto, K, Matsumoto, K, et al. (2022) Spermidine activates mitochondrial trifunctional protein and improves antitumor immunity in mice. Science 378, eabj3510.Google Scholar
Kiechl, S, Pechlaner, R, Willeit, P, et al. (2018) Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr 108, 371380.CrossRefGoogle ScholarPubMed
Wu, H, Wang, J, Jiang, H, et al. (2022) The association of dietary spermidine with all-cause mortality and CVD mortality: the U.S. National Health and Nutrition Examination survey, 2003 to 2014. Front Pub Health 10, 949170.Google Scholar
Vargas, AJ, Ashbeck, EL, Wertheim, BC, et al. (2015) Dietary polyamine intake and colorectal cancer risk in postmenopausal women. Am J Clin Nutr 102, 411419.Google Scholar
Schroeder, S, Hofer, SJ, Zimmermann, A, et al. (2021) Dietary spermidine improves cognitive function. Cell Rep 35, 108985.Google Scholar
Pekar, T, Wendzel, A, Flak, W, et al. (2020) Spermidine in dementia. Wien Klin Wochenschr 132, 4246.Google Scholar
Schwarz, C, Benson, GS, Horn, N, et al. Effects of spermidine supplementation on cognition and biomarkers in older adults with subjective cognitive decline. JAMA New Open 5, e2213875.Google Scholar
Ali, MA, Poortvilet, E, Stromberg, R, et al. (2011) Polyamines in foods: development of a food database. Food Nutr Res 5, 5572.Google Scholar
Shimizu, H (1996) The Basic Report on Takayama Study. Gifu: Department of Public Health, Gifu University School of Medicine.Google Scholar
Nagata, C, Wada, K, Yamakawa, M, et al. (2019) Intake of starch and sugars and total and cause-specific mortality in a Japanese community: the Takayama study. Br J Nutr 122, 820828.Google Scholar
Shimizu, H, Ohwaki, A, Kurisu, Y, et al. (1999) Validity and reproducibility of a quantitative food frequency questionnaire for a cohort study in Japan. Jpn J Clin Oncol 29, 3844.Google Scholar
Okamoto, A, Sugi, E, Koizumi, Y, et al. (1997) Polyamine content of ordinary foodstuffs and various fermented foods. Biosci Biotech Biochem 61, 15821584.Google Scholar
Yamamoto, S, Itano, H, Kataoka, H, et al. (1982) Gas-liquid chromatographic method for analysis of di-and polyamines in foods. J Agric Food Chem 30, 439442.Google Scholar
Nishimura, K, Shiina, R, Kashiwagi, K, et al. (2006) Decrease in polyamines with aging and their ingestion from food and drink. J Biochem 139, 8190.CrossRefGoogle ScholarPubMed
Nishibori, N, Fujiihara, S & Akatsuki, T (2007) Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem 100, 491497.Google Scholar
Cipolla, BG, Havouis, R & Moulinoux, JP (2007) Polyamine content in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids 33, 203212.Google Scholar
Council for Science and Technology & Ministry of Education, Culture, Sports, Science and Technology (2005) Standard Tables of Food Composition in Japan (5th Revised and Enlarged Edition) (in Japanese). Tokyo: National Printing Bureau.Google Scholar
Suzuki, I, Kawakami, N & Shimizu, H (1998) Reliability and validity of a questionnaire for physical activity in epidemiological studies. J Epidemiol 8, 152159.Google Scholar
Willett, W (1990) Implication of total energy intake for epidemiological analyses. In Nutritional Epidemiology, pp. 245271 [Willett, W, editor]. Oxford: Oxford University Press.Google Scholar
Mattoo, AK, Minocha, SC, Minocha, R, et al. (2010) Polyamines and cellular metabolism in plants: transgenic approaches reveal different responses to diamine putrescine versus higher polyamines spermidine and spermine. Amino Acids 38, 405413.Google Scholar
Giosu, A, Calabrese, I, Vitale, M, et al. (2022) Consumption of dairy foods and cardiovascular disease: a systemic review. Nutrients 14, 831.Google Scholar
Shirota, M, Watanabe, N, Suzuki, M, et al. (2022) Japanese-style diet and cardiovascular disease mortality: a systemic review and meta-analysis of prospective cohort studies. Nutrients 14, 2008.Google Scholar
Mendes, V, Niforou, A, Kasdagli, M, et al. (2023) Intake of legumes and cardiovascular disease: a systematic review and dose-response meta-analysis. Nutr Metab Cardiovasc Dis 33, 2237.CrossRefGoogle ScholarPubMed
Nagata, C, Wada, K, Tamura, T, et al. Dietary soy and natto intake and cardiovascular disease mortality in Japanese adults: the Takayama study. Am J Clin Nutr 105, 426431.Google Scholar
Soda, K, Kano, Y, Sakuragi, M, et al. (2014) Long-term oral polyamine intake increases blood polyamine concentrations. J Nutr Vitaminol 55, 361366.Google Scholar
Vargas, AJ, Thomson, EL, Gerner, EW, et al. (2014) Dietary polyamine intake and polyamines measured in urine. Nutr Cancer 66, 11441153.Google Scholar
Vargas, AJ, Wertheim, BC, Gerner, EW, et al. (2012) Dietary polyamine intake and risk of colorectal adenomatous polyps. Am J Clin Nutr 96, 133141.Google Scholar
Supplementary material: File

Nagata et al. supplementary material

Tables S1-S2

Download Nagata et al. supplementary material(File)
File 72.7 KB