Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-27T23:19:14.075Z Has data issue: false hasContentIssue false

The effect of increasing methionine supply on the methionine conversion to cyst(e)ine in sheep

Published online by Cambridge University Press:  09 March 2007

P. M. Pisulewski
Affiliation:
Department of Applied Biochemistry & Food Science, University of Nottingham, School of Agriculture, Sutton Bonington, Loughborough, Leicestershire LEI2 5RD
P. J. Buttery
Affiliation:
Department of Applied Biochemistry & Food Science, University of Nottingham, School of Agriculture, Sutton Bonington, Loughborough, Leicestershire LEI2 5RD
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The conversion of methionine to cyst(e)ine was determined in sheep infused with different amounts of methionine (0-5 g/d) into the duodenum by assaying the incorporation of 36S from intravenously-infused L-[35S]methionine into cyst(e)ine in wool, plasma albumin and the free plasma pool.

2. The percentage of cystine-S in the plasma originating from methionine increased linearly from 4.5 to 18 with increasing supplemental methionine supply.

3. The percentage of cysteine-S in albumin increased from 15 to 50; methionine supply increased to 3 g/d but then remained constant, indicating that the transsulphuration pathway of the liver was exceeded.

4. The percentage of wool cysteine-S originating from methionine was high (∼ 70) at all methionine supplementation rates.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

Armstrong, D. G. & Annison, E. F. (1973). Proceedings of the Nutrition Society 32, 107113.CrossRefGoogle Scholar
Association of official agricultural chemists (1965). Oficial methods of analysis of the association of oficial agricultural chemists, 10th ed. Washington, DC: Association of official Agricultural Chemists.Google Scholar
Atkin, G. E. & Ferdinand, W. (1970). Analytical Biochemistry 38, 313329.CrossRefGoogle Scholar
Bergen, W. G. (1979). Journal of Animal Science 49, 15771589.CrossRefGoogle Scholar
Bryant, D. T. W. & Smith, R. W. (1982). Journal of Agricultural Science, Cambridge 98, 639643.CrossRefGoogle Scholar
Buttery, P. J., Essex, C., Foulds, A. N. & Soar, J. B. (1984). Proceedings of the Nutrition Society 43, 56A.Google Scholar
Buttery, P. J., Manomai-Udom, S. & Lewis, D. (1977). Journal of the Science of Food and Agriculture 28, 481485.CrossRefGoogle Scholar
Chalupa, W. & Chandler, J. E. (1972). Tracer studies on non-protein nitrogen for ruminants, pp 107117. Vienna: International atomic energy agency.Google Scholar
Coward, B. J. & Buttery, P. J. (1982). Journal of Agricultural Science, Cambridge 98, 307316.CrossRefGoogle Scholar
Downes, A. M. (1961). Australian Journal of Biological Science 14, 109119.CrossRefGoogle Scholar
Downes, A. M., Sharry, L. F. & Till, A. R. (1964). Australian Journal of Biological Science 17, 945959.CrossRefGoogle Scholar
Fenderson, C. L. & Bergen, W. G. (1975). Journal of Animal Science 41, 17591766.CrossRefGoogle Scholar
Fennessy, P. F., Egan, A. R. & Radcliffe, B. C. (1978). Proceedings of the Nutrition Society of Australia 3, 74.Google Scholar
Findelstein, J. D. (1970). In Sulphur in nutrition, pp. 4660 [Muth, O. H. and Oldfield, J. E. editors], Westport: Avi press.Google Scholar
Garlick, P. J. (1980). In Protein deposition in animals, pp. 5167. [Buttery, B. J. and Lindsay, D. B. editors]. London: Butterworths.CrossRefGoogle Scholar
Gill, M. & Ulyatt, M. J. (1979). British Journal of Nutrition 41, 605609.CrossRefGoogle Scholar
Hogan, J. P. (1975). Journal of Dairy Science 58, 11641177.CrossRefGoogle Scholar
Laemmli, U. K. (1970). Nature 227, 680685.CrossRefGoogle Scholar
Langar, P. N., Buttery, P. J. & Lewis, D. (1978). Journal of the Science of Food and Agriculture 29, 808814.CrossRefGoogle Scholar
Lawrie, R. A. (1974). Meat science, 2nd ed. Oxford: Pergamon press.Google Scholar
Macrae, J. C. & Reeds, P. J. (1980). In Protein deposition in animals, pp. 225249 [Buttery, P. J. and Lindsay, D. B. editors]. London: Butterworths.CrossRefGoogle Scholar
Mathers, J. C. & Miller, E. L. (1979). In Protein metabolism in the ruminant, pp. 3.1–3.11 [Buttery, P. J. editor]. London: Agricultural research council.Google Scholar
Mathers, J. C. & Miller, E. L. (1983). In Proceedings of the 4th international symposium on protein metabolism and nutrition, pp. 2932 [Pion, R., Arnal, M. and Bonin, D. editors]. Paris: Inra.Google Scholar
Mathers, J. C., Miller, E. L. & Lerman, P. M. (1979). Annales de Recherche Vétérinaires 10, 310313.Google Scholar
Moore, S. (1963). Journal of Biological Chemistry 238, 235237.CrossRefGoogle Scholar
Radcliffe, B. C. & Egan, A. R. (1974). Australian Journal of Biological Science 27, 465471.CrossRefGoogle Scholar
Radcliffe, B. C. & Egan, A. R. (1978). Australian Journal of Biological Science 31, 105114.CrossRefGoogle Scholar
Reeds, P. J. & Lobley, G. E. (1980). Proceedings of the Nutrition Society 39, 4352.CrossRefGoogle Scholar
Reis, P. J., Tunks, D. A. & Sharry, L. F. (1973). Australian Journal of Biological Science 26, 635644.CrossRefGoogle Scholar
Shipley, R. A. & Clark, R. E. (1972). Tracer methods for in vivo kinetics. New york and london: Academic press.Google Scholar
Steele, R. D. & Benevenga, N. J. (1978). Journal of Biological Chemistry 235, 78447850.CrossRefGoogle Scholar
Stein, W. H. & Moore, S. (1954). Journal of Biological Chemistry 211, 915926.CrossRefGoogle Scholar
Strath, R. A. & Shelford, J. A. (1978). Canadian Journal of Animal Science 58, 479484.CrossRefGoogle Scholar
Swick, R. W. & Ip, M. M. (1974). Journal of Biological Chemistry, 249, 68366841.CrossRefGoogle Scholar
Williams, A. J. & Leng, R. A. (1972). Proceedings of the Australian Society of Animal Production 9, 326330.Google Scholar
Williams, A. P. & Smith, R. H. (1974). British Journal of Nutrition 32, 421433.CrossRefGoogle Scholar