Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-12T05:41:57.088Z Has data issue: false hasContentIssue false

The effect of molybdenum on the conversion of sulphate to sulphide and microbial-protein-sulphur in the rumen of sheep

Published online by Cambridge University Press:  25 March 2008

J. M. Gawthorne
Affiliation:
CSIRO, Division of Nutritional Biochemistry, Kintore Avenue, Adelaide, South Australia 5000, Australia
C. J. Nader
Affiliation:
CSIRO, Division of Nutritional Biochemistry, Kintore Avenue, Adelaide, South Australia 5000, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. [35S]sulphate was used to measure the apparent turnover of sulphate, sulphide and microbial-protein-S in the rumen contents of four sheep that were intraruminally infused with 10 g sodium sulphate/d alone, or together with 126 mg sodium molybdate (50 mg molybdenum/d).

2. Infusion of molybdate increased the concentration of sulphate in rumen fluid from 2.2 to 7.2 μg S/ml and decreased the rate of reduction of sulphate to sulphide by 50%. Although the rate of sulphide production was slower, the concentration of sulphide in rumen contents was increased. A dual role for molybdate in the metabolism of sulphide in the rumen is suggested to explain these changes.

3. In animals that were not infused with molybdate, only one-third of the S (3.0 g/d) that passed through the sulphate pool in rumen fluid was converted to sulphide, decreasing to one-sixth when molybdate was infused.

4. The turnover of S amino acids in microbial protein was not significantly affected by molybdate. Only 52–57% of the S amino acid content of microbial protein was synthesized de novo by way of the sulphide pool.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1976

References

Anderson, C. M. (1956). N. Z. Jl Sci. Technol. 37A, 379.Google Scholar
Aymonino, P. J., Ranade, A. C., Diemann, E. & Muller, A. (1969). Z. anorg. allg. Chem. 371, 300.CrossRefGoogle Scholar
Aymonino, P. J., Ranade, A. C. & Muller, A. (1969). Z. anorg. allg. Chem. 371, 295.CrossRefGoogle Scholar
Bingley, J. B. & Dick, A. T. (1967). J. agric. Fd Chem. 15, 539.CrossRefGoogle Scholar
Binnerts, W. T., van't Klooster, A. Th. & Frens, A. M. (1968). Vet. Rec. 82, 470.Google Scholar
Bird, P. R. (1972). Aust. J. biol. Sci. 25, 195.CrossRefGoogle Scholar
Bird, P. R. & Fountain, R. D. (1970). Analyst, Lond. 95, 98.CrossRefGoogle Scholar
Bray, A. C. (1965). Studies on sulphur metabolism in sheep. PhD Thesis, University of Western Australia.Google Scholar
Bray, A. C. (1969). Aust. J. agric. Res. 20, 739.CrossRefGoogle Scholar
Bryden, J. McG. & Bray, A. C. (1972). Proc. Aust. Soc. Anim. Prod. 9, 335.Google Scholar
Dick, A. T. (1956). In Inorganic Nitrogen Metabolism [McElroy, W. D. and Glass, B., editors]. Baltimore, Md., USA: The Johns Hopkins Press.Google Scholar
Downes, A. M. & McDonald, I. W. (1964). Br. J. Nutr. 18, 153.CrossRefGoogle Scholar
Emery, R. S., Smith, C. K. & Huffman, C. F. (1957). Appl. Microbiol. 5, 360.CrossRefGoogle Scholar
Gray, F. V., Weller, R. A., Pilgrim, A. F. & Jones, G. B. (1967). Aust. J. agric. Res. 18, 625.CrossRefGoogle Scholar
Hartmans, J. & Bosman, M. S. M. (1970). In Trace Element Metabolism in Animals, p. 362 [Mills, C. F., editor]. London: E. & S. Livingstone.Google Scholar
Huisingh, J. & Matrone, G. (1972). Proc. Soc. exp. Biol. Med. 139, 518.CrossRefGoogle Scholar
Johnson, C. M. & Nishita, H. (1952). Analyt. Chem. 24, 736.CrossRefGoogle Scholar
Mills, C. F. (1960). Proc. Nuh. Soc. 19, 162.CrossRefGoogle Scholar
Mills, C. F., Monty, K. J., Ichihara, A. & Pearson, P. B. (1958) J. Nutr. 65, 129.CrossRefGoogle Scholar
Moir, R. J. (1970). In Symposium: Sulphur in Nutrition, p. 165 [Muth, O. H. and Oldfield, J. E., editors]. Westport, Connecticut, USA: The AVI Publishing Co. Inc.Google Scholar
Nader, C. J. & Walker, D. J. (1970). Appl. Microbiol. 20, 677.CrossRefGoogle Scholar
Robbins, P. W. (1962). Meth. Enzym. 5, 964.CrossRefGoogle Scholar
Smith, R. M. & Marston, H. R. (1970). Br. J. Nutr. 24, 857.CrossRefGoogle Scholar
Spais, A. G., Lazaridis, T. K. & Agiannidis, A. K. (1968). Res. vet. Sci. 9, 337.CrossRefGoogle Scholar
Tridot, G. & Bernard, J. C. (1962). Acta chim. hung. 34, 179.Google Scholar
Underwood, E. J. (1971). Trace Elements in Human and Animal Nutrition. New York: Academic Press.Google Scholar
William, C. H., David, D. S. & Iismaa, O. (1962). J. agric. Sci., Camb. 59, 381.CrossRefGoogle Scholar
Wilson, L. G. & Bandurski, R. S. (1958). J. biol. Chem. 233, 975.CrossRefGoogle Scholar