Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-08T05:45:39.072Z Has data issue: false hasContentIssue false

The effect of RNA supplementation of rat diets on the composition of body fluids

Published online by Cambridge University Press:  09 March 2007

D. J. Heaf
Affiliation:
Department of Biochemistry Soil Science, University College of North Wales, Bangor, Gwynedd LL57 2UW
J. I. Davies
Affiliation:
Department of Biochemistry Soil Science, University College of North Wales, Bangor, Gwynedd LL57 2UW
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. In a number of separate experiments, yeast RNA, mixtures of its constituent nucleosides, its constituent bases and ribose were administered orally to rats. In each instance, the resultant changes in the composition of body fluids were monitored using sensitive methods.

2. Ingestion of RNA (100g/kg diet) caused detectable increases in intestinal ribose, inorganic phosphate, uridine, pseudouridine, uracil, inosine, uric acid and probably other purine bases. Their accumulation did not detectably affect the rate of passage of food along the digestive tract, even though some nucleosides are known to affect gut motility.

3. Although plasma levels of uric acid and uridine were higher when RNA was administered in the diet, these changes were very slight compared with those in plasma uracil, which in some experiments were increased more than 20-fold compared with control levels (300μmol/l). Analysis of erythrocytes indicated that the internal environment of at least some cells of the body are similarly altered.

4. Analyses indicated that all dietary RNA-phosphate passed into the urine from the gut but most of the RNA-ribose was probably metabolized. Uracil and uric acid levels in the urine reflected plasma composition.

5. The effect of orally administered mixed nucleosides on blood and urine composition was similar to that of RNA, but the response to an equivalent mixture of free bases differed in several respects; cytosine, adenine and hypoxanthine appeared in urine only under these circumstances.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1976

References

Adams, W. S., Davis, F. & Nakatani, M. (1960). Am. J. Med. 28, 726.CrossRefGoogle Scholar
Altman, P. L. & Dittmer, D. S. (editors) (1974). In Biology Data Handbook, Vol. 3, 2nd ed. Bethesda, Maryland: Federation of American Societies for Experimental Biology.Google Scholar
Attardi, G. & Amaldi, F. (1970). A. Rev. Biochem. 39, 183.CrossRefGoogle Scholar
Barnard, E. A. (1969). Nature, Lond. 221, 340.CrossRefGoogle Scholar
Barrett, H. W., Munavalli, S. N. & Newark, P. (1964). Biochim. biophys. Acta 91, 199.Google Scholar
Bendich, A., Brown, G. B., Philips, F. S. & Thiersch, J. B. (1950). J. biol. Chem. 183, 267.CrossRefGoogle Scholar
Berlin, R. D. & Hawkins, R. A. (1968). Am. J. Physiol. 215, 932.CrossRefGoogle Scholar
Bishop, C. (1964). In The Red Blood Cell, p. 148 [Bishop, C. and Surgenor, D. M., editors]. New York: Academic Press.Google Scholar
Borle, A. B. (1974). A. Rev. Physiol. 36, 361.CrossRefGoogle Scholar
Bowering, J., Calloway, H., Margen, S. & Kaufmann, N. A. (1970). J. Nutr. 100, 249.CrossRefGoogle Scholar
Bowering, J., Margen, S., Calloway, D. H. & Rhyne, A. (1969). Am. J. clin. Nutr. 22, 1426.CrossRefGoogle Scholar
Brachet, J. (1960). The Biological Role of Ribonucleic Acids, p. 1. Amsterdam: Elsevier.CrossRefGoogle Scholar
Burnstock, G. (1972). Pharmac. Rev. 24, 509.Google Scholar
Burtis, C. A. & Warren, K. S. (1968). Clin. Chem. 14, 280.CrossRefGoogle Scholar
Canallakis, E. S. (1957). J. biol. Chem. 227, 701.CrossRefGoogle Scholar
Carr, M. H. & Pressman, B. C. (1962). Analyt. Biochem. 4, 24.CrossRefGoogle Scholar
Cerecedo, L. R. (1927). J. biol. Chem. 75, 661.CrossRefGoogle Scholar
Cerecedo, L. R. & Emerson, O. H. (1930). J. biol. Chem. 87, 453.Google Scholar
Cooper, G. M., Dunning, W. F. & Greer, S. (1972). Cancer Res. 32, 390.Google Scholar
Cuthbertson, W. F. S. (1957). Proc. Nutr. Soc. 16, 70.CrossRefGoogle Scholar
Diamonte, A., Lombard, A., Tourn, M. L. & Cassone, M. C. (1971). J. Chromat. 60, 203.CrossRefGoogle Scholar
Dietrich, L. S. & Siegel, G. J. (1960). Am. J. Physiol. 199, 198.CrossRefGoogle Scholar
de Zeeuw, R. A. & Dull, G. G. (1975). J. Chromat. 110, 279.CrossRefGoogle Scholar
Dole, V. P. (1961). J. biol. Chem. 236, 3125.CrossRefGoogle Scholar
Drummond, G. I. & Duncan, L. (1970). J. biol. Chem. 245, 976.CrossRefGoogle Scholar
Duell, N. J. (1924). J. biol. Chem. 60, 749.CrossRefGoogle Scholar
Edozien, J. C., Udo, U. U., Young, V. R. & Scrimshaw, N. S. (1970). Nature, Lond. 228, 180.CrossRefGoogle Scholar
Elsworth, R., Miller, G. A., Whitaker, A. R., Kitching, D. & Sayer, P. D. (1968). J. appl. Chem., Lond. 18, 157.CrossRefGoogle Scholar
Fillios, L. C., Naito, C., Andrus, S. B. & Roach, P. M. (1960). Circulation Res. 8, 71.CrossRefGoogle Scholar
Fink, K. & Adam, W. S. (1968). Archs Biochem. Biophys. 126, 27.CrossRefGoogle Scholar
Fiske, C. H. & Subbarow, Y. (1925). J. biol. Chem. 66, 375.CrossRefGoogle Scholar
Frank, F. & Schittenhelm, A. (1909). Hoppe-Seyler's Z. physiol. Chem. 63, 269.CrossRefGoogle Scholar
Getler, H., Roll, P. M., Tinker, J. F. & Brown, G. B. (1949). J. biol. Chem. 178, 259.CrossRefGoogle Scholar
Hechter, O., Yoshinaga, K., Halkerston, D. J. & Birchall, K. (1967). Archs Biochem. Biophys. 122, 449.CrossRefGoogle Scholar
Hetenyi, G. & Ishiwata, K. (1968). Am. J. Physiol. 214, 1333.CrossRefGoogle Scholar
Hooper, C. E. S. (1956). J. Histochem. Cytochem. 4, 531.CrossRefGoogle Scholar
Ishiwata, K., Hetenyi, G. & Vranic, M. (1969). Diabetes 18, 820.CrossRefGoogle Scholar
Jacquez, J. A. (1962). Proc. Soc. exp. Biol. Med. 109, 132.CrossRefGoogle Scholar
Jolley, R. L. & Scott, C. D. (1970). Clin. Chem. 16, 687.CrossRefGoogle Scholar
Kihlberg, R. (1972). A. Rev. Microbiol. 26, 427.CrossRefGoogle Scholar
Kim, T. S., Schulman, J. & Levine, R. A. (1968). J. Pharmac. exp. Ther. 163, 36.Google Scholar
Kowal, J. (1970). Recent Prog. Horm. Res. 26, 623.Google Scholar
Lassen, U. V. (1967). Biochim. biophys. Acta 135, 146.CrossRefGoogle Scholar
Lato, M., Brunelli, B., Ciuffini, G. & Mazetti, T. (1969). J. Chromat. 39, 407.CrossRefGoogle Scholar
Layne, E. (1957). Meth. Enzym. 3, 450.Google Scholar
Lieu, T. S., Hudson, R. A., Brown, R. K. & White, B. C. (1971). Biochim. biophys. Acta 241, 884.CrossRefGoogle Scholar
Lis, E. W., Lis, A. W. & de Hackbeil, K. F. (1970). Clin. Chem. 16, 714.CrossRefGoogle Scholar
McAllan, A. B. & Smith, R. H. (1973). Br. J. Nutr. 29, 331.CrossRefGoogle Scholar
Maloof, F. & Soodak, M. (1961). Endocrinology 68, 831.CrossRefGoogle Scholar
Markham, R. (1957). Meth. Enzym. 3, 743.CrossRefGoogle Scholar
Mateles, R. I. & Tannenbaum, S. R. (editrors) (1968). In Single Cell Protein. Cambridge, Massachusetts: MIT Press.Google Scholar
Mendel, L. B. & Myers, V. C. (1910). Am. J. Physiol. 26, 77.CrossRefGoogle Scholar
Oliver, J. M. & Paterson, A. R. P. (1971). Can. J. Biochem. Physiol. 49, 262.Google Scholar
Peers, D. G. (1974). Effects of nucleic acid derivatives on carbohydrate metabolism in mammals. PhD Thesis, University of Wales.Google Scholar
Peers, D. G., Heaf, D. J. & Davies, J. I. (1973). Proc. FEBS Special Meeting on Industrial Aspects of BiochemistryDublin Abstr. 116.Google Scholar
Pentz, E. I. (1969). Adv. automat. Analysis 1, 111.Google Scholar
Pridham, J. B. (1956). Analyt. Chem. 28, 1967.CrossRefGoogle Scholar
Randerath, K. & Randerath, R. E. (1967). Meth. Enzym. 12, 323.CrossRefGoogle Scholar
Roll, P. M., Brown, G. B., Di Carlo, F. J. & Schultz, A. S. (1949). J. biol. Chem. 180, 333.CrossRefGoogle Scholar
Rose, W. C. (1924). Physiol. Rev. 3, 544.CrossRefGoogle Scholar
Schanker, L. S., Jeffrey, J. J. & Tocco, D. J. (1963). Biochem. Pharmac. 12, 1047.CrossRefGoogle Scholar
Schanker, L. S. & Tocco, D. J. (1960). J. Pharmac. exp. Ther. 128, 115.Google Scholar
Segal, S., Foley, J. & Wyngaarden, J. B. (1957). Proc. Soc. exp. Biol. Med. 95, 551.CrossRefGoogle Scholar
Simmonds, H. A. (1969). Clinica chim. Acta 23, 319.CrossRefGoogle Scholar
Sloviter, H. A., Iteka, M. & Sakata, K. (1964). Am. J. Physiol. 207, 407.CrossRefGoogle Scholar
Smith, R. H. & McAllan, A. B. (1971). Br. J. Nutr. 25, 181.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods, 6th ed., p. 329. Ames, Iowa: Iowa State University Press.Google Scholar
Steinberg, T., Ortman, P., Poucher, R., Cochran, B. & Gwinup, G. (1967). Metabolism 16, 40.CrossRefGoogle Scholar
Stevenson, A. E. & Clare, N. T. (1963). N.Z. Jl agric. Res. 6, 121.CrossRefGoogle Scholar
Stringer, D. A. & Litchfield, M. H. (1973). Proc. FEBS Special Meeting on Industrial Aspects of BiochemistryDublin Abstr. 117.Google Scholar
Thomas, A. J. (1970). In Automation, Mechanisation and Data Handling in Microbiology, p. 109 [Baillie, A. and Gilbert, R. J., editors]. London: Academic Press.Google Scholar
Waslien, C. T., Calloway, D. H. & Margen, S. (1968). Am. J. clin. Nutr. 21, 892.CrossRefGoogle Scholar
Whittam, R. (1960). J. Physiol., Lond. 154, 614.CrossRefGoogle Scholar
Wilson, D. W. (1923). J. biol. Chem. 56, 215.CrossRefGoogle Scholar
Wilson, D. W. & Wilson, H. C. (1962). J. biol. Chem. 237, 1643.CrossRefGoogle Scholar
Wilson, T. H. & Wilson, D. W. (1958). J. biol. Chem. 233, 1544.CrossRefGoogle Scholar
Wilson, T. M. (editor) (1962). In Intestinal Absorption. Philadelphia: W. B. Saunders Co.Google Scholar
Wyngaarden, J. B. (1972). In The Metabolic Basis of Inherited Disease, 3rd ed., p. 992 [Stanbury, J. B., Wyngaarden, J. B. and Fredrickson, D. S., editors]. New York: McGraw-Hill.Google Scholar