Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-25T16:55:49.626Z Has data issue: false hasContentIssue false

The effects of dietary ligands on zinc uptake at the porcine intestinal brush-border membrane

Published online by Cambridge University Press:  09 March 2007

A. J. Turnbull
Affiliation:
Gastrointestinal Laboratory, Rayne Institute, St Thomas' Hospital, London, SEl 7EH
P. Blakeborough
Affiliation:
AFRC Institute of Food Research, Reading Laboratory, Shinfield, Reading, RG2 9AT
R. P. H. Thompson
Affiliation:
Gastrointestinal Laboratory, Rayne Institute, St Thomas' Hospital, London, SEl 7EH
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Intestinal brush-border-membrane vesicles were prepared from the porcine small bowel by magnesium precipitation and differential centrifugation, and were functionally intact. The influence of dietary ligands on 65Zn uptake was determined using a 65Zn concentration of 5 μm, an incubation time of 1 min and a reaction temperature of 27°, with a rapid filtration technique. At this low Zn concentration the addition of an excess of folate, histidine or glucose had no effect on Zn uptake. Addition of picolinate, citrate and phytate to the incubation medium significantly reduced Zn uptake at all concentrations of ligand examined. Any inhibitory effects of folic acid in vivo may thuss be due to a mucosal rather than lumen interaction. Those ligands inhibiting absorption may have done so through the formation of Zn-ligand complexes, which are either insoluble, or which reduce the binding of Zn to its mucosal receptor. This in vitro model of Zn absorption is useful for comparing the effects of potential Zn-binding ligands in the diet.

Type
Ligands and Zinc Absorption
Copyright
Copyright © The Nutrition Society 1990

References

Albert, A. (1953). Quantitative studies of the avidity of naturally occurring substances for trace metals. Biochemical Journal 54, 646654.CrossRefGoogle ScholarPubMed
Bei, L., Wood, R. J. & Rosenberg, I. H. (1986). Glucose polymer increases jejunal calcium, magnesium, and zinc absorption in humans. American Journal of Clinical Nutrition 44, 244247.CrossRefGoogle ScholarPubMed
Bensadoun, A. & Weinstein, D. (1976). Assay of proteins in the presence of interfering materials. Analytical Biochemistry 70, 241250.CrossRefGoogle ScholarPubMed
Black, A. E., Wiles, S. J. & Paul, A. A. (1986). The nutrient intakes of pregnant and lactating mothers of good socio-economic status in Cambridge, UK: some implications for recommended daily allowances of minor nutrients. British Journal of Nutrition 56, 5972.CrossRefGoogle ScholarPubMed
Blakeborough, P. & Salter, D. N. (1987). The intestinal transport of zinc studied using brush border membrane vesicles from the piglet. British Journal of Nutrition 57, 4555.CrossRefGoogle ScholarPubMed
Booth, A. G. & Kenny, A. J. (1974). A rapid method for the preparation of microvilli from rabbit kidney. Biochemical Journal 142, 575581.CrossRefGoogle ScholarPubMed
Clarke, R. M. & Hardy, R. N. (1971). Histological changes in the small intestine of the young pig and their relation to macromolecular uptake. Journal of Anatomy 108, 6377.Google Scholar
Cousins, R. J. & Smith, K. T. (1980). Zinc-binding properties of bovine and human milk in vitro: influence of changes in zinc content. American Journal of Clinical Nutrition 33, 10831087.CrossRefGoogle ScholarPubMed
Dodds, W. J. (1982). The pig model for biomedical research. Federation Proceedings 41, 247248.Google Scholar
Duncan, J. R. & Hurley, L. S. (1978). Intestinal absorption of zinc: a role for a zinc-binding ligand in milk. American Journal of Physiology 235, E556E559.Google ScholarPubMed
Evans, G. W. & Johnson, P. E. (1980). Characterization and quantitation of a zinc-binding ligand in human milk. Pediatric Research 14, 876880.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S. J. (1988). Zinc in human nutrition. Nutrition Research Reviews 1, 2337.CrossRefGoogle ScholarPubMed
Fuller, N. J., Evans, P. H., Howlett, M. & Bates, C. J. (1988). The effects of dietary folate and zinc on the outcome of pregnancy and early growth in rats. British Journal of Nutrition 59, 251259.CrossRefGoogle ScholarPubMed
Ghishan, F. K., Said, H. M., Wilson, P. C., Murrell, J. E. & Greene, H. L. (1986). Intestinal transport of zinc and folk acid: a mutual inhibitory effect. American Journal of Clinical Nutrition 43, 258262.CrossRefGoogle Scholar
Griessen, M., Speich, P. V., Infante, F., Bartholdi, P., Cochet, B., Donath, A., Courvoisier, B. & Bonjaur, J.-Ph. (1989). Effect of absorbable and nonabsorbable sugars on intestinal calcium absorption in humans. Gastroenterology 96, 769775.CrossRefGoogle ScholarPubMed
Haase, W., Schafer, A., Murer, H. & Kinne, R. (1978). Studies on the orientation of brush border membrane vesicles. Biochemical Journal 172, 5762.CrossRefGoogle ScholarPubMed
Hill, D. A., Peo, E. R. & Lewis, A. J. (1987). Effect of zinc source and picolinic acid on 65Zn uptake in an in vitro continuous-flow perfusion system for pig and poultry intestinal segments. Journal of Nutrition 117, 17041707.CrossRefGoogle Scholar
Hurley, L. S. & Lonnerdal, B. (1981). Picolinic acid as a zinc-binding ligand in human milk: an unconvincing case. Pediatric Research 15, 166167.CrossRefGoogle ScholarPubMed
Hurley, L. S., Lonnerdal, B. & Stanislowski, A. G. (1979). Zinc citrate, human milk and acrodermatitis enteropathica. Luncer i, 677678.CrossRefGoogle Scholar
Jackson, M. J., Jones, D. A. & Edwards, R. H. T. (1981). Zinc absorption in the rat. British Journal of Nutrition 46, 1527.CrossRefGoogle ScholarPubMed
Jones, B. J. M., Brown, B. E., Loran, L. S., Edgerton, D., Kennedy, J. F., Stead, J. A. & Silk, D. B. A. (1983). Glucose absorption from starch hydrolysates in the human jejunum. Gut 24, 11521160.CrossRefGoogle ScholarPubMed
Keating, J. N., Wada, L., Stokstad, E. L. R. & King, J. C. (1987). Folic acid: effect on zinc absorption in humans and in the rat. American Journal of Clinical Nutrition 46, 835839.CrossRefGoogle ScholarPubMed
Kratzer, F. H. & Vohra, P. (1986). Chelates in Nutrition. Boca Raton, Florida: CRC Press.Google Scholar
Krebs, N. F., Hambidge, K. M., Hagerman, R. I., Peirce, P. L., Johnson, K. M., English, J. L., Miller, L. L. & Fennessey, P. V. (1988). The effects of pharmacologic doses of folate on zinc absorption and zinc status. American Journal of Clinical Nutrition 47, 783.Google Scholar
Lonnerdal, B., Bell, J. G., Hendrickx, A. G., Burns, R. A. & Keen, C. L. (1988). Effect of phytate removal on zinc absorption from soy formula. American Journal of Clinical Nutrition 48, 13011306.CrossRefGoogle ScholarPubMed
McMaster, D., Ewing, A. S., Erwin, C., McBriar, D. L. & Love A. H. G. (1985). The influence of dietary vitamins on zinc uptake from the lumen of the perfused rat gut. Nutrition Research Suppl. 1, 267270.Google Scholar
May, P. M., Smith, G. L. & Williams, D. R. (1982). Computer calculations of zinc (II)-complex distribution in milk. Journal of Nutrition 112, 19901993.CrossRefGoogle ScholarPubMed
Meadows, N. J., Ruse, W., Smith, M. F., Day, J., Keeling, P. W. N., Scopes, J. W., Thompson, R. P. H. & Bloxam, D. L. (1981). Zinc and small babies. Lancet ii, 11351137.CrossRefGoogle Scholar
Menard, M. P. & Cousins, R. J. (1983 a). Zinc transport by brush border membrane vesicles from rat intestine. Journal of Nutrition 113, 14341442.CrossRefGoogle ScholarPubMed
Menard, M. P. & Cousins, R. J. (1983 b). Effect of citrate, glutathione and picolinate on zinc transport by brush border membrane vesicles from rat intestine. Journal of Nutrition 113, 16531656.CrossRefGoogle ScholarPubMed
Milne, D. B., Canfield, W. K., Mahalko, J. R. & Sandstead, H. H. (1984). Effects of oral folic acid supplements on zinc, copper, and iron absorption and excretion. American Journal of Clinical Nutrition 39, 535539.CrossRefGoogle ScholarPubMed
Murer, H., Ammann, E., Biber, J. & Hopfer, U. (1976). The surface membrane of the small intestinal epithelial cell. Biochimica et Biophysica Acta 433, 509519.CrossRefGoogle ScholarPubMed
Murer, H. & Kinne, R. (1980). The use of isolated membrane vesicles to study epithelial transport processes. Journal of Membrane Biology 55, 8195.CrossRefGoogle ScholarPubMed
National Research Council (1980). Recommended Daily Allowances, 9th ed. Washington, DC: National Academy Press.Google Scholar
Prasad, A. S. (1984). Zinc deficiency in sickle cell disease. Progress in Clinical and Biological Research 165, 4958.Google ScholarPubMed
Scholmerich, J., Freudemann, A., Kottgen, E., Wietholtz, H., Steiert, B., Lohle, E., Haussinger, D. & Cerok, W. (1987). Bioavailability of zinc from zinc–histidine complexes. 1. Comparison with zinc sulphate in healthy men. American Journal of Clinical Nurrition 45, 14801486.CrossRefGoogle ScholarPubMed
Seal, C. J. & Heaton, F. W. (1983). Chemical factors affecting the intestinal absorption of zinc in vitro and in vivo. British Journal of Nutrition 50, 317324.CrossRefGoogle ScholarPubMed
Simmer, K., Iles, C. A., James, C. & Thompson, R. P. H. (1987) Are iron-folate supplements harmful? American Journal of Clinical Nutrition 45, 122125.CrossRefGoogle ScholarPubMed
Solomons, N. W. (1982). Biological availability of zinc in humans. American Journal of Clinical Nutrition 35, 10481075.CrossRefGoogle ScholarPubMed
Southon, S., Fairweather-Tait, S. J. & Hazell, T. (1988). Trace element availability from the human diet. Proceedings of the Nutrition Society 47, 2735.CrossRefGoogle ScholarPubMed
Steinhardt, H. J. & Adibi, S. A. (1984). Interactions between transport of zinc and other solutes in human intestine. American Journal of Physiology 247, G176G182.Google ScholarPubMed
Wapnir, R. A., Khani, D. E., Bayne, M. A. & Lifshitz, F. (1983). Absorption of zinc by the rat ileum: effects of histidine and other low-molecular-weight ligands. Journal of Nutrition 113, 13461354.CrossRefGoogle ScholarPubMed