Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-13T15:38:58.106Z Has data issue: false hasContentIssue false

From animals in the service of nutrition...to the potential of biotechnology

Published online by Cambridge University Press:  09 August 2018

Judith Hall*
Affiliation:
Department of Biological and Nutritional Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In 1986, in her paper, ‘Animals in the service of human nutrition’, celebrating the award of the E. V. McCollum International Lectureship in Nutrition, Dr Elsie Widdowson observed: ‘Animals have served human nutrition well over the past century.... They are still of great service in human nutrition and may be more essential in the future as proper animal models for human diseases are discovered’. Ten years on, those animal models are an integral part of nutrition research and are providing fundamental tools to study the effects of diet on many of the major diseases of the Western world, including cardiovascular disease, obesity and cancer. Many of these models have been developed through the use of recombinant DNA technology and the expression of normal or mutated genes in the genome of transgenic mice.

Type
Research Article
Copyright
Copyright © The Authors 1997

References

Ali, S., Hall, J., Hazlewood, G. P., Hirst, B. H. & Gilbert, H. J. (1996). A protein targeting signal that functions in polarised epithelial cells in vivo. Biochemical Journal 315, 857862.CrossRefGoogle Scholar
Allen, N. D., Barton, S. C., Surani, M. A. H. & Reik, W. (1987). Production of transgenic mice. In Mammalian Development: A Practical Approach, pp. 217232 [Monk, M., editor]. Oxford & Washington: IRL Press.Google Scholar
Breslow, J. (1994). Lipoproteins and heart disease. Bio/Technology 12, 365371.CrossRefGoogle ScholarPubMed
Burn, J., Kartheuser, A., Fodde, R., Coaker, J., Chapman, P. D. & Mathers, J. C. (1996). Intestinal tumours in the Ape 1638N mouse: aspirin not protective and resistant starch increases small bowel tumours. European Journal of Human Genetics 4, Suppl. 1, S11.002.Google Scholar
Campbell, K. H. S., McWhir, J., Ritchie, W. A. & Wilmut, I. (1996). Sheep cloned by nuclear transfer from a cultured cell line. Nature 380, 6466.CrossRefGoogle ScholarPubMed
Carver, A., Wright, G., Cotton, D., Cooper, J., Dalrymple, M., Temperley, S., Udell, M., Reeves, D., Percy, J., Scott, A., Barrass, D., Gibson, Y., Jeffrey, Y., Samuel, C., Colman\A., & Garner, I. (1992). Expression of human alpha-1 antitrypsin in transgenic sheep. Cytotechnology 9, 7784.CrossRefGoogle ScholarPubMed
Fodde, R., Edelmann, W., Yang, K., van Leeuwen, C., Carlson, C., Renault, B., Breukel, C., Alt, E., Lipkin, M., Khan, P. M. & Kucherlapati, R. (1994). A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumours. Proceedings of the National Academy of Sciences USA 91, 88698973.Google Scholar
Hall, J., Ali, S., Surani, M. A., Hazlewood, G. P., Clark, A. J., Simmons, P. J., Hirst, B. H. & Gilbert, H. J. (1993). Manipulation of the repertoire of digestive enzymes secreted into the gastrointestinal tract of transgenic mice. Bio/Technology 11, 376379.Google Scholar
Hammer, R. E., Swift, G. H., Ornitz, D. M., Quaife, C. J., Palmiter, R. D., Brinster, R. L. & MacDonald, R. J. (1987). The rat elastase 1 regulatory element is an enhancer that directs correct cell specificity and developmental onset of expression in transgenic mice. Molecular Cell Biology 7, 29562967.Google Scholar
Hew, C. L., Fletcher, G. L. & Davies, P. L. (1995). Transgenic salmon: tailoring the genome for food production. Journal of Fish Biology 47, Suppl. A, 119.Google Scholar
Lodish, H., Baltimore, D., Berk, A., Zipursky, S. L., Matsudaira, P. & Darnell, J. (1995). Chapter 8: Genetic analysis. In Molecular Cell Biology, 3rd ed., pp. 263303. New York: Scientific American Books, an imprint of W.H. Freeman & Co. Google Scholar
Lowell, B. B., Susulic, V., Hamann, A., Lawitts, J. A., Himms-Hagen, J., Boyer, B. B., Kozak, L. P. & Flier, J. S. (1993). Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366, 740742.Google Scholar
Palmiter, R. D., Behringer, R. R., Quaife, C. J., Maxwell, F., Maxwell, I. H. & Brinster, R. L. (1987). Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell 50, 435443.Google Scholar
Plump, A. S., Smith, J. D., Hayek, T., Aalto-Setala, K., Walsh, A., Verstuyft, J. G., Rubin, E. M. & Breslow, J. (1992). Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71, 343353.Google Scholar
Reaven, G. M., Mondon, C. E., Chen, Y. D. I. & Breslow, J. L. (1994). Hypertriglyceridemic mice transgenic for the human apoliprotein C III gene are neither insulin-resistant nor hyperinsulinemic. Journal of Lipid Research 35, 820824.Google Scholar
Watson, J. D. & Crick, F. H. C. (1953). Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. Nature 171, 737738.Google Scholar
Widdowson, E. (1986). Animals in the service of human nutrition. Nutrition Reviews 44, 221227.Google Scholar
Wright, G., Carver, A., Cotton, D., Reeves, D., Scott, A., Simons, P., Wilmut, I., Garner, I. & Coiman, A. (1991). High-level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Bio/Technology 9, 830834.Google Scholar