Hostname: page-component-788cddb947-55tpx Total loading time: 0 Render date: 2024-10-19T06:08:08.468Z Has data issue: false hasContentIssue false

The influence of dietary carbohydrate and fat on kidney calcification and the urinary excretion of N-acetyl-β-glucosaminidase (EC 3.2.1.30)

Published online by Cambridge University Press:  08 December 2008

S. S. Kang
Affiliation:
Queen Elizabeth College, LondonW8 7AU
R. G. Price
Affiliation:
Queen Elizabeth College, LondonW8 7AU
J. Yudkin
Affiliation:
Queen Elizabeth College, LondonW8 7AU
N. A. Worcester
Affiliation:
Department of Biochemistry and Chemistry, Royal Free Hospital School of Medicine, LondonWC2
K. R. Bruckdorfer
Affiliation:
Department of Biochemistry and Chemistry, Royal Free Hospital School of Medicine, LondonWC2
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Male Sprague-Dawley rats were fed on diets containing either sucrose or starch as the carbohydrate component. In one experiment, the diets also contained 200 g either butter or polyunsaturated margarine/kg; in a second experiment, the diets contained less fat in the form of 20 g maize oil/kg.

2. Over a period of 11 months assays were made in the urine of several ions and of the activity of the enzyme N-acetyl-β-glucosaminidase (β-2-acetamido-2-deoxy-β-D glucoside acetamidodeoxygluco-hydrolase; EC 3.2.1.30); at 13 months, examination was made of some of the abdominal viscera, especially of the kidneys.

3. In rats fed on the higher amount of fat, dietary sucrose produced a higher activity of the enzyme than did dietary starch, and a greater excretion of inorganic phosphate.

4. With both the higher and lower amounts of dietary fat, sucrose led to an increase in the weight of the liver and of the kidneys, and an increase in the concentration of calcium and of phosphate in kidney tissue. With the higher amount of fat, sucrose also produced an increase in the concentration of magnesium in the kidney. There was no difference in the concentration of any of the ions assayed in the plasma or, apart from inorganic phosphate, in the urine.

5. The kidneys of the sucrose-fed rats showed nephrocalcinosis, mostly in the cortico-medullary region, and basophilic deposits in the tubules. Attention is drawn to this unusual occurrence of nephrocalcinosis in male rats.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1979

References

AIN Standards (1977). J. Nutr. 107, 1340.CrossRefGoogle Scholar
Bender, A. E., Damji, K. B., Khan, M. A., Khan, I. H., McGregor, L. & Yudkin, J. (1972). Nature, Lond. 238, 461.CrossRefGoogle Scholar
Bruckdorfer, K. R., Khan, I. H. & Yudkin, J. (1972). Biochem. J. 129,439.CrossRefGoogle Scholar
Bruckdorfer, K. R., Kang, S. S., Khan, I. H., Bourne, A. B. & Yudkin, J. (1974). Horm. Metab. Res. 6, 99.CrossRefGoogle Scholar
Bunce, G. E. & Bloomer, J. E. (1972). J. Nutr. 102, 863.CrossRefGoogle Scholar
Cohen, A. M. & Rosenmann, E. (1971). Diabetologia 7, 25.CrossRefGoogle Scholar
Cousins, F. B. & Geary, C. P. M. (1966). Nature, Lond. 211, 980.CrossRefGoogle Scholar
Dance, N., Price, R. G., Cattell, W. R., Lansdell, J. & Richards, B. (1970). Clinica chim. Acta 27, 87.CrossRefGoogle Scholar
Du Brun, D. B. (1972). S. Afr. med. J. 46, 1588.Google Scholar
Fiske, C. H. & SubbaRow, Y. (1925). J. biol. Chem. 66, 335.CrossRefGoogle Scholar
Forbes, R. M. & Parker, H. (1971). Proc. Soc. exp. Biol. Med. 138, 927.CrossRefGoogle Scholar
Gardner, L. B., Spannhake, B., Keeney, M. & Reiser, S. (1977). Nutr. Rep. int. 15, 361.Google Scholar
Goulding, A. & Malthus, R. S. (1969). J. Nutr. 97, 353.CrossRefGoogle Scholar
Goulding, A. & Malthus, R. S. (1971). J. Endocr. 49, 29.CrossRefGoogle Scholar
Haase, P. (1975). J. Anat. 119, 19.Google Scholar
Kang, S. S. (1973). Effects of dietary carbohydrate on lipid metabolism in the rat. PhD Thesis, University of London.Google Scholar
Kang, S. S., Price, R. G., Bruckdorfer, K. R., Worcester, N. A. & Yudkin, J. (1977 a). Biochem. Soc. Trans. 5, 235.CrossRefGoogle Scholar
Kang, S. S., Price, R. G., Bruckdorfer, K. R., Worcester, N. A. & Yudkin, J. (1977 b). Proc. Nutr. Soc. 36, 27A.Google Scholar
Kaunitz, H. & Johnson, R. E. (1976). Metabolism 25, 69.CrossRefGoogle Scholar
Luorna, H., Nuuja, T., Collan, Y. & Nummikoski, P. (1976). Calcif. Tiss. Res. 20, 291.Google Scholar
Mäenpää, P. H., Rairio, K. O. & Kekomaki, M. P. (1968). Science, N. Y. 161, 1253.CrossRefGoogle Scholar
Meyer, D. L. & Forbes, R. M. (1968). Proc. Sac. exp. Biol. Med. 128, 157.CrossRefGoogle Scholar
Price, R. G., Dance, N. & Robinson, D. (1971). Eur. J. clin. Invest. 2, 47.CrossRefGoogle Scholar
Price, R. G., Taylor, S. A., Kang, S. S., Bruckdorfer, K. R. & Yudkin, J. (1978). Proc. IVth int. Symp. Glycoconjugates. (In the Press.)Google Scholar
Robinson, D., Price, R. G. & Dance, N. (1967). Biochem. J. 102, 525.CrossRefGoogle Scholar
Romsos, D. R. & Leveille, G. A. (1974). Biochim. biophys. Acta 360, 1.CrossRefGoogle Scholar
Rosenmann, E., Teitelbaum, A. & Cohen, A. M. (1971). Diabetes 20, 803.CrossRefGoogle Scholar
Willis, J. B. (1961). Analyt. Chem. 33, 556.CrossRefGoogle Scholar
Woodard, J. C. (1971 a). Am. J. Path. 65, 269.Google Scholar
Woodard, J. C. (1971 b). Am. J. Path. 65, 253.Google Scholar