Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T07:00:33.051Z Has data issue: false hasContentIssue false

Influence of particle size and sources of non-starch polysaccharides on postprandial glycaemia, insulinaemia and triacylglycerolaemia in pigs and starch digestion in vitro

Published online by Cambridge University Press:  09 March 2007

Christophe Leclere
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire de Technologie Appliquée à la Nutrition, B.P. 527, 44026 Nantes Cédex 03, France
Denis Lairon
Affiliation:
Institut National de la Santé et de la Recherche Médicale, U-130, 18, Avenue Mozart, 13009 Marseille, France
Martine Champ
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire de Technologie Appliquée à la Nutrition, B.P. 527, 44026 Nantes Cédex 03, France
Christine Cherbut
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire de Technologie Appliquée à la Nutrition, B.P. 527, 44026 Nantes Cédex 03, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Physico-chemical properties of dietary fibres might be involved in metabolic control, particularly of the postprandial blood glucose response. The aim of the present study was to look at the effects of the content of soluble fibres and of the particle size of solid fibres on in vitro and in vivo starch hydrolysis and on the subsequent glucose absorption as well as the triacylglycerolaemia. Two sources of dietary fibres, one, with soluble fibres (beet pulp), the other with mostly insoluble fibres (wheat bran), were added at the rate of 60 g/kg to a meal simulating human food. The fibre sources were ground in order to obtain two different particle sizes (250 and 500 μm). Beet pulp decreased significantly (P < 0·05) initial in vitro hydrolysis whereas wheat bran increased starch hydrolysis in the first 10 min. Wheat bran and beet pulp, whatever its particle size, lowered the post-prandial triacylglycerol response. No significant effect was found with dietary fibre-supplemented diets on postprandial glycaemic and insulinaemic values. High correlation was found between initial in vitro starch hydrolysis and mean areas under the insulinaemic curves. This in vitro model can be used to predict initial in vivo digestion of carbohydrates from complex foods.

Type
Metabolic Effects of Carbohydrate
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

Albot, G. & Boisson, J. (1985). Les diverses présentations du son en therapeutique. Leurs proprittes respectives (Various forms of wheat bran in therapeutics. Their respective properties). Annales de Gastroentérologie et d Hépatologie 21, 317319.Google Scholar
Anderson, H., Bosaeus, I., Falkheden, T. & Melkersson, N. (1979). Scandinavian Journal of Gastroenterology 14, 821826.CrossRefGoogle Scholar
Anderson, J. W., Story, L., Sieling, B., Chen, W. L., Petro, M. S. & Story, J. (1984). Hypocholesterolemic effects of oat bran or bean intake for hypocholesterolemic men. American Journal of Clinical Nutrition 40, 11461155.CrossRefGoogle ScholarPubMed
Anderson, J. W. & Tietyen-Clark, J. (1986). Dietary fiber: hyperlipidemia, hypertension and coronary heart disease. American Journal of Gastroenterology 81, 907919.Google ScholarPubMed
Blackburn, N. A., Redfern, J. S., Jarjis, H., Holgate, A. M., Hanning, I., Scarpello, J. H. B., Johnson, I. T. & Read, N. W. (1984). The mechanism of action of guar gum in improving glucose tolerance in man. Clinical Science 66, 329336.CrossRefGoogle ScholarPubMed
Borel, P., Lairon, D., Senft, M., Chautan, M. & Lafont, H. (1989). Effect of wheat bran and wheat germ on the digestion and the intestinal absorption of dietary lipids in the rat. American Journal of Clinical Nutrition 49, 11921202.CrossRefGoogle ScholarPubMed
Borel, P., Martigne, M., Senft, M., Garzino, P., Lafont, H. & Lairon, D. (1990). Effect of wheat bran and wheat germ on the intestinal uptake of oleic acid, monoolein and cholesterol in the rat. Journal of Nutritional Biochemistry 1, 2833.CrossRefGoogle ScholarPubMed
Bornet, F. (1986). Etude des relations entre les propriétés physicochimiques de glucides assimilables et leurs effets hyperglycémiants chez I'homme sain ou diabetique et chez le porc (Study of the relations between physicochemical properties of carbohydrates and their hypoglycaemic effects in diabetic or healthy man and in the pig). Thése de doctorat de troisiéme cycle de Paris VII, 133 pages.Google Scholar
Bornet, F., Fontvieille, A.-M., Rizkalla, S., Colonna, P., Blayo, A., Mercier, C. & Slama, G. (1989). Insulin and glycemic responses in healthy humans to native starches processed in different ways: correlation with in vitro alpha-amylolysis. American Journal of Clinical Nutrition 50, 315323.CrossRefGoogle Scholar
Bradbury, D., MacMasters, M. M. & Cull, I. M. (1956). Structure of the mature wheat kernel. 11. Microscopic structure of pericarp, seed coat, and other coverings of the endosperm and germ of hard red winter wheat. Cereal Chemistry 33, 342.Google Scholar
Buccolo, G. & David, H. (1973). Quantitative determination of serum triglycerides by the use of enzymes. Clinical Chemistry 19, 476482.CrossRefGoogle Scholar
Cara, L., Dubois, C., Borel, P., Armand, M., Senft, M., Portugal, H., Pauli, A. M., Bernard, P. M. & Lairon, D. (1992). Effects of oat bran, rice bran, wheat fiber and wheat germ on postprandial lipemia in healthy adults. American Journal of Clinical Nutrition 55, 8188.CrossRefGoogle ScholarPubMed
Cherbut, C., Salvador, V., Barry, J.-L., Doulay, F. & Delort-Laval, J. (1991). Dietary fibre effects on intestinal transit in man: involvement of their physicochemical and fermentative properties. Food Hydrocolloids 5, 1522.CrossRefGoogle Scholar
Dunaif, G. & Schneeman, B. O. (1981). The effect of dietary fiber on human pancreatic enzyme activity in vitro. American Journal of Clinical Nutrition 34, 10341035.CrossRefGoogle ScholarPubMed
Ebeling, P., Yki-Jarvinen, H., Aro, A., Helve, E., Sinisalo, M. & Koivisto, V. A. (1988). Glucose and lipid metabolism and insulin sensitivity in type 1 diabetes: the effect of guar gum. American Journal qf Clinical Nutrition 48, 98103.CrossRefGoogle ScholarPubMed
Edwards, C. A., Blackburn, N. A., Craigen, L., Davidson, P., Tomlin, J., Sugden, K., Johnson, I. T. & Read, N. W. (1987). Viscosity of food gums determined in vitro related to their hypoglycemic actions. American Journal of Clinical Nutrition 46, 7277.CrossRefGoogle ScholarPubMed
Gallaher, D. & Schneeman, B. O. (1985). Effect of dietary cellulose on site of lipid absorption. American Journal of Physiology 249, G184–G191.Google ScholarPubMed
Gee, J. M., Blackburn, N. A. & Johnson, I. T. (1983). The influence of guar gum on intestinal cholesterol transport in the rat. British Journal of Nutrition 50, 215224.CrossRefGoogle ScholarPubMed
Goodlad, J. S. & Mathers, J. C. (1991). Digestion by pigs of non-starch polysaccharides in wheat and raw peas (Pisum sativum) fed in mixed diets. British Journal of Nutrition 65, 259270.CrossRefGoogle ScholarPubMed
Graham, H., Hesselman, K. & Aman, P. (1986). The influence of wheat bran and sugar-beet pulp on the digestibility of dietary components in a cereal-based diet. Journal of Nutrition 116, 242251.CrossRefGoogle Scholar
Hamberg, O., Rumessen, J. J. & Gudman-Hoyer, E. (1989). Inhibition of starch absorption by dietary fibre. A comparative study of wheat bran, sugar-beet fibre, and pea fibre. Scandinavian Journal of Gastroenterology 24, 103109.CrossRefGoogle ScholarPubMed
Hansen, W. E. & Schulz, G. (1982). The effect of dietary fibre on pancreatic amylase activity in vitro. Hepato- gastroenterology 29, 157160.Google ScholarPubMed
Heaton, K. W., Marcus, S. N., Emmett, P. M. & Bolton, C. H. (1988). Particle size of wheat, maize, and oat test meals: effects on plasma glucose and insulin responses and on the rate of starch digestion in vitro. American Journal of Clinical Nutrition 47, 675682.CrossRefGoogle ScholarPubMed
Isaksson, G., Asp, N.-G. & Ihse, I. (1983). Effect of dietary fiber on pancreatic enzyme activities of ileostomy evacuate and on excretion of fat and nitrogen in the rat. Scandinavian Journal of Gastroenrerology 18, 417423.CrossRefGoogle ScholarPubMed
Jenkins, D. J. A., Wolever, T. M. S., Jenkins, A. L., Lee, R., Wong, G. S. & Josse, R. (1983). Glycemic response to wheat products: reduced response to pasta but no effect of fiber. Diabetes Care 6, 155159.CrossRefGoogle ScholarPubMed
Jenkins, D. J. A., Wolever, T. M. S., Leeds, A. R., Gassul, M. A., Haismam, P., Dilawari, J., Goff, D. V., Metz, G. L. & Alberti, K. G. M. M. (1978). Dietary fibres, fibre analogues, and glucose tolerance: importance of viscosity. British Medical Journal 1, 13921394.CrossRefGoogle ScholarPubMed
Judd, P. A. & Truswell, A. S. (1985). The hypocholesterolemic effects of pectin in rats. British Journal of Nutrition 53, 409425.CrossRefGoogle Scholar
Karlstrom, B., Nydahl, M. & Vessby, B. (1989). Dietary habits and effects of dietary advice in patients with type 2 diabetes. Results from a one-year intervention study. European Journal of Clinical Nulrition 43, 5968.Google ScholarPubMed
Kay, R. M. & Truswell, A. S. (1977). Effect of citrus pectin on blood lipids and fecal steroid excretion in men. American Journal of Clinical Nutrition 30, 171175.CrossRefGoogle Scholar
Kruger, J. E. (1972). Changes in the amylases of hard red spring wheat during growth and maturation. Cereal Chemistry 47, 79.Google Scholar
Lairon, D., Lafont, H., Vigne, L., Nalbone, G., Leonardi, J. & Hauton, J. C. (1985). Effects of dietary fibers and cholestyramine on the activity of pancreatic lipase in vitro. American Journal of Clinical Nutrition 49, 629638.CrossRefGoogle Scholar
Leclere, C., Cherbut, C., Guillon, F. & Champ, M. (1990). The effect of soluble fibre content of beet pulp on the in vitro alpha-amylolysis of a semi-synthetic meal. Sciences des Aliments 10, 309315.Google Scholar
Leveille, G. A. & Sauberlich, H. E. (1966). Mechanism of the cholesterol-depressing effect of pectin in the cholesterol-fed rat. Journal of Nuirition 88, 209.Google ScholarPubMed
Michel, F., Thibault, J. F., Barry, J. L. & De Baynast, R. (1988). Preparation and characterisation of dietary fibre from sugar beet pulp. Journal of the Science of Food and Agriculture 42, 7785.CrossRefGoogle Scholar
Morgan, L. M., Tredger, J. A., Wright, J. & Marks, V. (1990). The effect of soluble and insoluble-fibre supplementation on postprandial glucose tolerance, insulin and gastric inhibitory polypeptide secretion in healthy subjects. British Journal of Nutrition 64, 103110.CrossRefGoogle ScholarPubMed
Peters, L. E., Walker, L. P., Wilson, D. B. & Irwin, D. C. (1991). The impact of initial particle size on the fragmentation of cellulose by the cellulases of Thermomonospora fusca. Bioresource Technology 35, 313319.CrossRefGoogle Scholar
Prosky, L., Asp, N.-G., Furda, I., Devries, J. W., Schweizer, T. F. & Harland, B. F. (1985). Determination of total dietary fiber in foods and food products: collaborative study. Association of Oflcial Analytical Chemists. Journal 68 (4), 677679.Google ScholarPubMed
Prosky, L., Asp, N. G., Furda, I., Schweizer, T. & De Vries, J. W. (1988). Determination of insoluble, soluble and total dietary fiber in foods and food products. Association of Official Analytical Chemists. Journal 71, 10171023.Google ScholarPubMed
Reiser, S. (1978). The role of cereal fiber in human nutrition and health: glucose tolerance and diabetes. In Proceedings of 10th National Conference on Wheat Utilization Research pp. 3950. Berkeley, California: Science and Education Administration.Google Scholar
Saunders, R. M. & Hautala, E. (1979). Dietary fiber evaluation of wheat products by in vitro and in vivo methods. In Dietary Fibers: Chemistry and Nutrition pp. 7993 [Inglett, S. E. and Falkehag, S. I., editors]. London: Academic Press Inc. Ltd.CrossRefGoogle Scholar
Schneeman, B. O. (1978). Effect of plant fiber on lipase, trypsin and chymotrypsin activity. Journal of Food Science 43, 634635.CrossRefGoogle Scholar
Snow, P. & O'Dea, K. (1981). Factors affecting the rate of hydrolysis of starch in food. American Journal of Clinical Nutrition 34, 27212727.CrossRefGoogle ScholarPubMed
Villaume, C., Beck, B., Gariot, P., Desalme, A. & Debry, G. (1984). Long-term evolution of the effect of bran ingestion on meal-induced glucose and insulin responses in healthy man. American Journal of Clinical Nutrition 40, 10231026.CrossRefGoogle ScholarPubMed
Wyman, J. B., Heaton, K. W. & Maning, A. P. (1976). Laxative effect of all-bran. British Medical Journal ii, 944.CrossRefGoogle Scholar