Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-29T04:36:09.208Z Has data issue: false hasContentIssue false

The metabolizable energy value of Polydextrose® in a mixed diet fed to rats

Published online by Cambridge University Press:  09 March 2007

S. Cooley
Affiliation:
AFRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich NR4 7UA
G. Livesey
Affiliation:
AFRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich NR4 7UA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The digestible energy (DE) and metabolizable energy (ME) values of a commercial Polydextrose® product and the polymer that it contained were determined by metabolic energy balance in male Wistar rats and compared with values obtained by radiochemical balance using a radiochemical analogue. The energy values of the whole preparations and of the polymer fractions were estimated.

2. In the energy-balance study of 6 d duration, 100 g maize starch/kg control diet were replaced by Polydextrose® to provide a test diet. Polydextrose® had no significant effects on food intake, body-weight gain, digestibility of nitrogen and N retention but significantly increased the water consumption to 143% of the control value (P < 0.05) and the water content of fresh faecal pellets from 548 (SE 10) to 646 (SE 15) g/kg wet weight (P < 0.01).

3. By energy balance the DE in the Polydextrose® product and in the polymer that it contained were 13.5 and 12.8 (SE 1.9) kJ/g respectively. The corresponding ME values were 12.7 and 12.1 (SE 1.8) kJ/g respectively. These values were higher (P < 0.05) than the corresponding values obtained by the radiochemical balance procedure: DE 8.8 and 8.6 (SE 0.4) kJ/g polymer respectively and ME 8.0 and 7.8 (SE 0.5)kJ/g polymer respectively.

4. These findings indicate relatively high energy values for Polydextrose® by comparison with previously published values and illustrate a potential difficulty when using energy values obtained by certain radiochemical methods to estimate the energy values of a mixed diet given to rats. Several alternative explanations of the discrepancies are advanced.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1987

References

REFERENCES

Allingham, R. P. (1982). Chemistry of Foods and Beverages: Recent Developments, pp. 293303. London: Academic Press.CrossRefGoogle Scholar
Allison, R. G. & Senti, F. R. (1983). A Perspective on the Application of the Atwater System of Food Energy Assessment. Bethesda, Maryland: Federation of American Societies for Experimental Biology.Google Scholar
Atwater, W. O. (1910). Principles of Nutrition and Nutritive Value of Food, Farmers' Bulletin no. 142. Washington DC: United States Department of Agriculture.Google Scholar
Bachmann, W., Haslbeck, M. & Mehnert, H. (1982). Aktuelle Endokrinologie und Stoffwechsel 3, 124125.Google Scholar
Bailey, N. T. J. (1976). Statistical Methods in Biology. London: Hodder and Stoughton.Google Scholar
Bird, S. P., Hewitt, D. & Gurr, M. I. (1985). Proceedings of the Nutrition Society 44, 40A.Google Scholar
Cunningham, H. M., Friend, D. W. & Nicholson, J. W. G. (1962). Canadian Journal of Animal Science 42, 167175.CrossRefGoogle Scholar
Figdor, S. K. & Bianchine, J. R. (1983). Journal of Agricultural and Food Chemistry 31, 389393.CrossRefGoogle Scholar
Figdor, S. K. & Rennhard, H. H. (1981). Journal of Agricultural and Food Chemistry 29, 11811189.CrossRefGoogle Scholar
Freeman, T. M. (1982). Cereal Foods World 27, 515.Google Scholar
Goranzon, H., Forsum, E. & Thilen, M. (1983). American Journal of Clinical Nutrition 38, 954963.CrossRefGoogle Scholar
Grossklaus, R., Klingeblel, L., Lorenz, S. & Pahlke, G. (1984). Nutrition Research 4, 459468.CrossRefGoogle Scholar
Grupp, U. & Siebert, G. (1978). Research in Experimental Medicine 173, 261278.CrossRefGoogle Scholar
Kearsley, M. W., Birch, G. G. & Liah-Loh, R. H. P. (1982). Stärke 8, 283297.Google Scholar
Kleiber, M. (1975). The Fire of Life. Huntington, New York: Robert E. Kreiger Publishing Co.Google Scholar
Liah-Loh, R., Birch, G. G. & Coates, M. (1982). British Journal of Nutrition 48, 477481.CrossRefGoogle Scholar
Liebrand, J. & Smiles, R. (1981). The Manufacturing Confectioner November, 3540.Google Scholar
Livesey, G. & Elia, M. (1985). Clinical Nutrition 4, 99111.CrossRefGoogle Scholar
MacDonald, I. & Daniel, J. W. (1983). Nutrition Research 28, 10831090.Google Scholar
Merril, A. L. & Watt, B. K. (1955). Energy Value of Foods, Basis and Derivation, United States Department of Agriculture Handbook no. 74. Washington, DC: United States Department of Agriculture.Google Scholar
Metta, V. C. & Mitchell, H. H. (1954). Journal of Nutrition 52, 601611.CrossRefGoogle Scholar
Ministry of Agriculture, Fisheries and Food (1980). Report of Food Additives and Contaminants Committee FAC/REP/32, London: H. M. Stationery Office.Google Scholar
Oku, T., Inoue, Y. & Hosoya, N. (1971). Journal of the Japanese Society for Food and Nutrition 24, 399404.Google Scholar
Oku, T., Tokunaga, T. & Hosoya, N. (1984). Journal of Nutrition 114, 15741581.CrossRefGoogle Scholar
Paul, A. A. & Southgate, D. A. T. (1978). McCance and Widdowson's The Composition of Foods, 4th ed. London: H. M. Stationery Office.Google Scholar
Rennhard, H. H. (1973). U.S. Patent no. 3. 766–165.Google Scholar
Rennhard, H. H. (1981). 182nd National Meeting of the American Chemical Society, New York, AGFD 24 Washington, DC: Abstr. American Chemical Society (unpublished manuscript available from Pfizer Inc., Pfizer Central Research, Groton, Connecticut 06340, USA.)Google Scholar
Rennhard, H. H. & Bianchine, J. R. (1976). Journal of Agricultural and Food Chemistry 24, 287290.CrossRefGoogle Scholar
Rubner, M. (1901). Zeitschrift für Biologie 42, 261305.Google Scholar
Smiles, R. E. (1982). Chemistry of Foods and Beverages: Recent Developments, pp. 305322. London: Academic Press.CrossRefGoogle Scholar
Solomons, N. W. & Rosenthal, A. (1985). Journal of Laboratory and Clinical Medicine 105, 585592.Google Scholar
Southgate, D. A. T. & Durnin, J. V. G. A. (1970). British Journal of Nutrition 24, 517535.CrossRefGoogle Scholar
Torres, A. & Thomas, P. (1981). Food Technology July, 4449.Google Scholar
Van Es, A. J. H., de Groot, L. & Vogt, J. E. (1986). British Journal of Nutrition 56, 545554.CrossRefGoogle Scholar
Williams, V.J. & Senior, W. (1985). Journal of Nutrition 155, 11471153.CrossRefGoogle Scholar