Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-15T22:40:00.823Z Has data issue: false hasContentIssue false

A method for determination of unoxidized and total methionine in protein concentrates, with special reference to fish meals

Published online by Cambridge University Press:  25 February 2008

L. R. Njaa
Affiliation:
Government Vitamin Institute, Directorate of Fisheries, 501 3 Bergen, Norway
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. An automated colorimetric method for determination of methionine using an iodoplatinate reagent is described. Methionine sulphoxide does not react under the chosen conditions.

2. The method may be used to distinguish between unoxidized and total methionine by doing one deter- mination without and one determination with previous reduction of a portion of the sample with titanium trichloride. Methionine sulphoxide is then obtained by difference.

3. The method has been used with protein concentrates, mainly fish meals, after hydrolysis with barium hydroxide. Interference from cysteine-cystine is eliminated by adding a small amount of cadmium acetate to the sample before hydrolysis.

4. Results obtained for total methionine and for methionine sulphoxide by independent methods show good agreement with results obtained with the iodoplatinate method.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1980

References

Anderson, G. H., Li, G. S. K., Jones, J. D. & Bender, F. (1975). J. Nutr. 105, 317.CrossRefGoogle Scholar
Awwad, H. K. & Adelstein, S. J. (1966). Analyt. Biochem. 16, 433.CrossRefGoogle Scholar
Barber, G. W. (1967). Automation in analytical Chemistry, Technicon Symposia, Vol. 1, p. 401. New York: Mediad Inc.Google Scholar
Cuq, J.-L., Besancon, P., Chartier, L. & Cheftel, C. (1978). Fd Chem. 3, 85.CrossRefGoogle Scholar
Ellinger, G. M. (1978). Annls. Nutr. Alim. 32, 281.Google Scholar
Ellinger, G. M. & Palmer, R. (1969). Proc. Nutr. Soc. 28, 42A.Google Scholar
Fowler, B. & Robins, A. J. (1972). J. Chromat. 72, 105.CrossRefGoogle Scholar
Gawargious, Y. A. (1971). Microcbem. J. 16, 673.CrossRefGoogle Scholar
Gjøen, A. U. & Njaa, L. R. (1977). Br. J. Nutr. 37, 93.CrossRefGoogle Scholar
Lunder, T. L. (1972). Analyt. Biocbem. 49, 585.Google Scholar
McCarthy, T. E. & Sullivan, M. X. (1941). J. biol. Cbem. 141, 871.CrossRefGoogle Scholar
Miller, E. L., Carpenter, K. J. & Milner, C. K. (1965). Br. J. Nutr. 19, 547.CrossRefGoogle Scholar
Moorhouse, C. O., Law, A. R. & Maddix, C. (1977). Advances in Automated Chemistry. 7th Technicon International Congress, Vol. 2, p. 182. New York: Mediad Inc.Google Scholar
Njaa, L. R. (1962). Acta chem. scand. 16, 1359.CrossRefGoogle Scholar
Pieniążek, D., Rakowska, M., Skziąlldziowa, W. & Grabarek, Z. (1975). Br. J. Nutr. 34, 175.CrossRefGoogle Scholar
Sease, J. W., Lee, T., Holzman, G., Swift, E. H. & Niemann, C. (1948). Analyt. Chem. 20, 431.CrossRefGoogle Scholar
Sjöberg, L. B. & Boström, S. L. (1977). Br. J. Nutr. 38, 189.CrossRefGoogle Scholar
Slump, P. & Schreuder, H. A. W. (1973). J. Sci. Fd Agric. 24, 657.CrossRefGoogle Scholar
Smith, R. E. & Elmayergi, H. H. (1971). Poult. Sci. 50, 287.CrossRefGoogle Scholar
Ussary, J. P. & Gehrke, C. W. (1970). Advances in Airromared Analysis. 2nd Technicon International Congress Vol. 2, p. 89. New York: Mediad Inc.Google Scholar
Weidner, K. & Eggum, B. 0. (1966). Acta Agric. scand. 16, 115.CrossRefGoogle Scholar