Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-13T16:00:26.122Z Has data issue: false hasContentIssue false

Nutritional aspects of amino acid metabolism

1. A rat liver perfusion method for the study of amino acid metabolism

Published online by Cambridge University Press:  09 March 2007

D. L. Bloxam
Affiliation:
Department of Biochemistry, University College, London
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Experiments were done to find whether the rat liver can be maintained in a satisfactory condition when perfused with oxygenated Krebs-Ringer bicarbonate buffer without added protein or red cells.

2. The condition and preformance of the liver in this system were assessed from measurements made to ascertain its general condition or viability, its basal characteristics and its response to added substrates.

3. It was found that the rapid flow-rate of the medium through the livers and the efficient oxygenation of the medium ensured that enough oxygen was available for the livers to deal with large quantities of added lactate.

4. The potassium concentrations in the livers and the rates of alanine aminotransferase (EC 2.6.1.6) from the cells during perfusion, and the water content after perfusion showed that the livers were not grossly damaged and that they did not deteriorate measurably for up to 3 h of perfusion.

5. Liver oxygen consumption, ATP concentrations, lactate and pyruvate concentrations and ratios, and rates of urea and glucose synthesis and bile secretion, all in perfusions without added substrate, were either similar to measurements by other workers from livers perfused withmedia containingred cells and protein or were reasonable extrapolations from availabledata.

6. The rates of glucose production from lactate, and urea and glucose output from amino acids indicated that the liver responds adequately to added substrates.

7. Measurements of amino acid concentrations in perfusate indicated that the livers of rats starved for 18–20 h regulated the amino acids to characteristic levels, by overall output or uptake, except for valine, leucine and isoleucine which were continuously given out into the medium. The results suggest that in vivo there is a general flow of most of the amino acids from extrahepatic tissues to the liver during fasting, while valine, leucine and isoleucine flow from liver to extrahepatic tissues.

8. When pentobarbitone sodium (Nembutal) was used as the anaesthetic for removal of the liver from the donor rat, the rates of urea and glucose output in perfusions without added substrates were lower than when halothane (Fluothane) was used, indicating that pentobarbitone has an inhibitory effect on these measures of liver function during the subsequent perfusion.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1971

References

REFERENCES

Adam, H. (1963). In Methods of Enzymatic Analysis P. 539. [Bergmeyer, H. U., editor]. New York and London: Academic Press.Google Scholar
Addis, T., Poo, L. J. & Lew, W. (1936 a). j. biol. Chem. 115, 111.CrossRefGoogle Scholar
Addis, T., Poo, L. J. & Lew, W. (1936 b). j. biol. Chem. 115, 117.CrossRefGoogle Scholar
Addis, T., Poo, L. J. & Lew, W. (1936 c). j. biol. Chem. 116, 343.CrossRefGoogle Scholar
Albritton, E. C. [editor] (1952). Standard Values in Blood p. 120. Philadelphia and London: Saunders.Google Scholar
Barcroft, J. & Shore, L. E. (1913). j. Physiol., Lond. 45, 296.CrossRefGoogle Scholar
Bartels, H. & Hohorst, H.-J. (1963). Biochim. biophys. Acta 71, 214.CrossRefGoogle Scholar
Bartley, W., Dean, B., Taylor, C. B. & Bailey, E. (1967). Biochem. j. 103, 550.CrossRefGoogle Scholar
Bennett, H. D. (1964). In The Liver. Biochemical Clinics Symposium no. 3, p. 13 [Kugelmass, I. N., editor]. New York: Reuben H. Donnelley.Google Scholar
Bloxam, D. L. (1966). j. Physiol., Lond. 186, 137P.Google Scholar
Bloxam, D. L. (1967 a). Biochem. Pharmac. 16, 283.CrossRefGoogle Scholar
Bloxam, D. L. (1967 b). Biochem. Pharmac. 16, 1848.CrossRefGoogle Scholar
Bloxam, D. L. (1972). Br. j. Nutr. 27. (In the Press.)Google Scholar
Brauer, R. W. (1963). Physiol. Rev. 43, 115.CrossRefGoogle Scholar
Brauer, R. W., Leong, G. F. & Holloway, R. J. (1961). Fedn Proc. Fedn Am. Socs exp. Biol. 20, 286.Google Scholar
Brauer, R. W., Leong, G. F., Holloway, R. J. & Krebs, J. S. (1963). In Selective Vulnerability of the Brain in Hypoxaemia. Symposium organised by the Council for International Organisations of Medical Sciences p. 273 [Schade, J. D. and McMenemey, W. H., editors]. Oxford: Blackwell.Google Scholar
Brauer, R. W., Pessotti, R. L. & Pizzolato, P. (1951). Proc. Soc. exp. Biol. Med. 78, 174.CrossRefGoogle Scholar
Bristow, D. A. & Kerly, M. (1964). j. Physiol., Lond. 170, 318.CrossRefGoogle Scholar
Brunner, E. A. (1969). Anesthesiology 30, 24.CrossRefGoogle Scholar
Bücher, T., Krejci, K., Russmann, W., Schnitger, H. & Wesemann, W. (1964). In Rapid Mixing and Sampling Techniques in Biochemistry p. 255 [Chance, B.Eisenhardt, R. H.Gibson, Q. H. and Lonberg-Holm, K. K., editors]. New York and London: Academic Press.CrossRefGoogle Scholar
Bunker, J. P. (1962). In Diethyl Ether. Its Effects in the Human Body p. 51 [Dodd, R. B., editor]. Springfield: Thomas.Google Scholar
Burton, S. D., StGeorge, S. & Ishida, T. (1960). j. appl. Physiol. 15, 128.CrossRefGoogle Scholar
Carlsten, A. & Werkö, L. (1967). Acta med. scand. 181, 199.CrossRefGoogle Scholar
Christensen, H. N. (1962). Biological Transport. New York: Benjamin.CrossRefGoogle Scholar
Christensen, H. N. (1964). In Mammalian Protein Metabolism Vol. 1, p. 105 [Munro, H. N. and Allison, J. B., editors]. New York and London: Academic Press.CrossRefGoogle Scholar
Clarke, E. W. (1957). j. Physiol., Lond. 136, 380.CrossRefGoogle Scholar
Coon, W. W. & Willis, P. W. (1966). Clin. Pharmac. Ther. 7, 379.CrossRefGoogle Scholar
Dawkins, M. J. R., Judah, J. D. & Rees, K. R. (1959). j. Path. Bact. 77, 257.CrossRefGoogle Scholar
Dawson, A. G., Hird, F. J. R. & Morton, D. J. (1967). Archs Biochem. Biophys. 122, 426.CrossRefGoogle Scholar
D'Silva, J. L. & Neil, M. W. (1954). j. Physiol., Lond. 124, 515.CrossRefGoogle Scholar
Eggleston, L. V. & Krebs, H. A. (1969). Biochem. j. 144, 877.CrossRefGoogle Scholar
Elwyn, D. H. (1966). Fedn Proc. Fedn Am. Socs exp. Biol. 25, 854.Google Scholar
Exton, J. H., Jefferson, L. S., Butcher, R. W. & Park, C. R. (1968). Am. j. Med. 40, 709.CrossRefGoogle Scholar
Exton, J. H. & Park, C. R. (1967). j. biol. Chem. 242, 2622.CrossRefGoogle Scholar
Fawcett, J. K. & Scott, J. E. (1960). j. clin. Path. 13, 156.CrossRefGoogle Scholar
Feller, D. D. (1965). In Handbook of Physiology Sect. 5: Adipose Tissue p. 363. Washington DC: American Physiological Society.Google Scholar
Feller, D. D. & Feist, E. (19591960). j. Lipid Res. 1, 90.CrossRefGoogle Scholar
Fisher, M. M. & Kerly, M. (1964). j. Physiol., Lond. 174, 273.CrossRefGoogle Scholar
Flock, E. V., Mann, F. C. & Bollman, J. L. (1951). J. biol. Chem. 192, 293.CrossRefGoogle Scholar
Floyd, J. C. Jr, Fajans, S. S., Conn, J. W., Knopf, R. F. & Rull, J. (1966). J. clin. Invest. 45, 1487.CrossRefGoogle Scholar
Forsander, O. A., Räihä, N., Salaspuro, M. & Mäenpää, P. (1965). Biochem. j. 94, 259.CrossRefGoogle Scholar
Frame, E. G. (1958). j. clin. Invest. 37, 1710.CrossRefGoogle Scholar
Freedman, A. D. & Kohn, L. (1964). Science, N. Y. 145, 58.CrossRefGoogle Scholar
Freeman, S. & Svec, M. (1951). Am. j. Physiol. 167, 201.CrossRefGoogle Scholar
Friedman, M. F., Byers, S. O. & Michaelis, F. (1950). Am. J. Physiol. 162, 575.CrossRefGoogle Scholar
Gordon, E. R. (1963). Can. J. Biochem. Physiol. 41, 1611.CrossRefGoogle Scholar
Greengard, P. (1956). Nature, Lond. 178, 632.CrossRefGoogle Scholar
Hems, R., Ross, B. D., Berry, M. N. & Krebs, H. A. (1966). Biochem. J. 101, 284.CrossRefGoogle Scholar
Herken, H., Senet, G. & Zemisch, B. (1966). Arch. exp. Path. Pharmak. 253, 364.CrossRefGoogle Scholar
Hess, B. (1963). Enzymes in Blood Plasma Ch. 2, p. 5. New York and London: Academic Press.Google Scholar
Hohorst, H. J. (1963). In Methods of Enzymatic Analysis p. 266. [Bergmeyer, H. U., editor]. New York and London: Academic Press.Google Scholar
Hohorst, H. J., Kreutz, F. H. & Bücher, T. (1959). Biochem. Z. 332, 18.Google Scholar
Hohorst, H. J., Kreutz, F. H. & Reim, M. (1961). Biophys. biochem. Res. Commun. 4, 159.CrossRefGoogle Scholar
Huggett, A. St G. & Nixon, D. A. (1957). Lancet ii, 368.CrossRefGoogle Scholar
Hunter, S. V., Laastuen, L. E. & Todd, W. R. (1967). J. Nutr. 92, 133.CrossRefGoogle Scholar
Judah, J. D., Ahmed, K. & McLean, A. E. M. (1964). In Cellular Injury: Ciba Foundation Symposium p. 187.London:Churchill.Google Scholar
Krayer, O. (1928). Arch. exp. Path. Pharmak. 128, 116.CrossRefGoogle Scholar
Krebs, H. A. (1950). Biochim. biophys. Acta 4, 249.CrossRefGoogle Scholar
Krebs, H. A. (1967). In Advances in Enzyme Regulation Vol. 5, p. 409 [Weber, G., editor]. Oxford and New York: Pergamon Press.Google Scholar
Krebs, H. A., Wallace, P. G., Hems, R. & Freedland, R. A. (1969). Biochem. J. 112, 595.CrossRefGoogle Scholar
Kunkel, H. G. & Eisenmenger, W. J. (1949). Proc. Soc. exp. Biol. Med. 71, 212.CrossRefGoogle Scholar
Lamprecht, W. & Trautschold, I. (1963). In Methods of Enzymatic Analysis p. 543 [Bergmeyer, H. U., editor]. New York and London: Academic Press.Google Scholar
Lardy, H. A., Foster, D. O., Shrago, E. & Ray, P. D. (1964). In Advances in Enzyme Regulation Vol. 2, p. 39 [Weber, G., editor]. Oxford and New York: Pergamon Press.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
McLean, A. E. M., Ahmed, K. & Judah, J. D. (1964). Ann. N. Y. Acad. Sci. 116, 986.CrossRefGoogle Scholar
McMenamy, R. H., Vang, J. & Drapanas, T. (1965). Am. J. Physiol. 209, 1046.CrossRefGoogle Scholar
Magee, P. N. (1966). Lab. Invest. 14, 111.Google Scholar
Mallette, L. E., Exton, J. H. & Park, C. R. (1969). J. biol. Chem. 244, 5713.CrossRefGoogle Scholar
Manchester, K. L. (1965). Biochim. biophys. Acta 100, 295.CrossRefGoogle Scholar
Manchester, K. L. (1970). In Diabetes Mellitus: Theory and Practice [Ellenberg, M. and Rifkin, H., editors]. New York: McGraw-Hill. (In the Press.)Google Scholar
Mark, L. C. (1963). Clin. Pharmac. Ther. 4, 504.CrossRefGoogle Scholar
Marks, V. (1959). Clinica chim. Acta 4, 395.CrossRefGoogle Scholar
Marquez-Julio, A. & French, I. W. (1968). Can. J. Biochem. Physiol. 45, 1323.Google Scholar
Matschinsky, F., Meyer, U. & Wieland, O. (1960). Biochem. Z. 333, 48.Google Scholar
Menahan, L. A., Ross, B. D. & Wieland, O. (1968). Biochem. biophys. Res. Commun. 30, 38.CrossRefGoogle Scholar
Miller, L. L. (1962). In Amino Acid Pools p. 708 [Holden, J. T., editor]. London: Elsevier.Google Scholar
Miller, L. L., Bly, C. G., Watson, M. L. & Bale, W. F. (1951). J. exp. Med. 94, 431.CrossRefGoogle Scholar
Miller, L. L., Burke, W. T. & Haft, D. E. (1955). Fedn Proc. Fedn Am. Soc exp. Biol. 14, 707.Google Scholar
Miller, L. L., Burke, W. T. & Haft, D. E. (1956). In Some Aspects of Amino Acid Supplementation p. 44 [Cole, W. H., editor]. New Brunswick, New Jersey: Rutgers.Google Scholar
Mohur, A. F. & Cook, I. J. Y. (1957). J. clin. Path. 10, 394.Google Scholar
Mondon, C. E. & Mortimore, G. E. (1967). Am. J. Physiol. 212, 173.CrossRefGoogle Scholar
Morris, B. (1960). Aust. J. exp. Biol. med. Sci. 38, 99.CrossRefGoogle Scholar
Mortimore, G. E. (1961). Am. J. Physiol. 200, 1315.CrossRefGoogle Scholar
Munro, H. N. (1964). In Mammalian Protein Metabolism Vol. 1, p. 381 [Munro, H. N. and Allison, J. B., editors]. New York and London: Academic Press.CrossRefGoogle Scholar
Ngai, S. H. & Papper, E. M. (1962). Metabolic Effects of Anesthesia. Springfield: Thomas.Google Scholar
Ostashever, A. S., Gray, I. & Graff, S. (1960). Am. J. Physiol. 199, 395.CrossRefGoogle Scholar
Peters, J. M. & Boyd, E. M. (1966). J. Nutr. 90, 354.CrossRefGoogle Scholar
Popper, H. & Schaffner, F. (1957). Liver: Structure and Function p. 213. New York, Toronto and London: McGraw-Hill.Google Scholar
Potter, V. R., Baril, E. F., Watanabe, M. & Whittle, E. D. (1968). Fedn Proc. Fedn Am. Socs exp. Biol. 27, 1238.Google Scholar
Quastel, J. H. (19651966). Proc. R. Soc. B 163, 169.Google Scholar
Rees, K. R. & Shotlander, V. L. (1964). In The Liver: Biochemical Clinics Symposium no. 3, p. 181 [Kugelmass, I. N., editor]. New York: Reuben H. Donnelley.Google Scholar
Richards, R. K. & Taylor, J. D. (1956). Anesthesiology 17, 414.CrossRefGoogle Scholar
Ross, B. D., Hems, R., Freedland, R. A. & Krebs, H. A. (1967). Biochem. J. 105, 869.CrossRefGoogle Scholar
Ross, B. D., Hems, R. & Krebs, H. A. (1967). Biochem. J. 102, 942.CrossRefGoogle Scholar
Schimassek, H. (1962). Life Sci. 1, 629.CrossRefGoogle Scholar
Schimassek, H. (1963). Biochem. Z. 336, 460.Google Scholar
Schimassek, H. & Gerok, W. (1965). Biochem. Z. 343, 407.Google Scholar
Schmidt, E., Schmidt, F. W., Horn, H. D. & Gerlach, U. (1963). In Methods of Enzymatic Analysis p. 651 [Bergmeyer, H. U., editor]. New York and London: Academic Press.Google Scholar
Schnitger, H., Scholz, R., Bücher, T. & Lübbers, D. W. (1965). Biochem. Z. 341, 334.Google Scholar
Scholz, R., Thurman, R. G., Williamson, J. R., Chance, B. & Bücher, T. (1969). J. biol. Chem. 244, 2317.CrossRefGoogle Scholar
Schotz, M. C. & Olivecrona, T. (1966). Biochim. biophys. Acta 125, 174.CrossRefGoogle Scholar
Shoemaker, W. C. & Elwyn, D. H. (1969). A. Rev. Physiol. 31, 227.CrossRefGoogle Scholar
Shrago, E., Lardy, H. A., Nordlie, R. C. & Foster, D. O. (1963). J. biol. Chem. 238, 3188.CrossRefGoogle Scholar
Slater, T. F., Sawyer, B. & Sträuli, U. (1964). Archs int. Physiol. Biochim. 72, 427.Google Scholar
Söling, H. D., Willms, B., Friedrichs, D. & Kleineke, J. (1968). Eur. J. Biochem. 4, 364.CrossRefGoogle Scholar
Spector, W. S. [editor] (1956). Handbook of Biological Data p. 74. Philadelphia and London: Saunders.Google Scholar
Spruyt, J. E. L. (1964). A study of amino acid metabolism in the isolated perfused rat liver, with particular reference to transamination reactions. PhD Thesis, University of London.Google Scholar
Struck, E., Ashmore, J. & Wieland, O. (1965). Biochem. Z. 343, 107.Google Scholar
Telkkä, A. & Kuusisto, A. N. (1962). Acta endocr., Copenh. 41, 57.Google Scholar
Teufel, H., Menahan, L. A., Shipp, J. C., Böning, S. & Wieland, O. (1967). Eur. J. Biochem. 2, 182.CrossRefGoogle Scholar
Toews, C. J., Lowy, C. & Ruderman, N. B. (1970). J. biol. Chem. 245, 818.CrossRefGoogle Scholar
Trowell, O. A. (19411942). J. Physiol., Lond. 100, 432.CrossRefGoogle Scholar
Umbreit, W. W., Burris, R. H. & Stauffer, J. F. (1964). Manometric Techniques 4th ed., p. 132. Minneapolis: Burgess.Google Scholar
Vandam, L. D. (1966). A. Rev. Pharmac. 6, 379.CrossRefGoogle Scholar
Van Slyke, D. D. & Neill, J. M. (1924). J. biol. Chem. 61, 523.CrossRefGoogle Scholar
Weber, G. (1959). Revue can. Biol. 18, 245.Google Scholar
Weber, G. & Cantero, A. (1959). Am. J. Physiol. 197, 699.CrossRefGoogle Scholar
Weiss, K. H. (1966). Arzneimittel-Forsch. 16, 140.Google Scholar
Williamson, J. R., Browning, E. T. & Scholz, R. (1969). J. biol. Chem. 244, 4607.CrossRefGoogle Scholar
Williamson, J. R., Kreisberg, R. A. & Felts, P. W. (1966). Proc. natn. Acad. Sci. U. S. A. 56, 247.CrossRefGoogle Scholar
Wilson, T. H. (1962). Intestinal Absorption p. 110. Philadelphia and London: Saunders.Google Scholar
Wollenberger, A., Ristau, O. & Schoffa, G. (1960). Pflügers Arch. ges. Physiol. 270, 399.CrossRefGoogle Scholar