Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-23T09:25:43.690Z Has data issue: false hasContentIssue false

Quantitative effects of defaunation on rumen fermentation and digestion in sheep

Published online by Cambridge University Press:  09 March 2007

J. B. Rowe
Affiliation:
Imperial Chemical Industries PLC, Pharmaceuticals Division, Alderley Park, Macclesfield, Cheshire SKI0 4TG
A. Davies
Affiliation:
Imperial Chemical Industries PLC, Pharmaceuticals Division, Alderley Park, Macclesfield, Cheshire SKI0 4TG
A. W. J. Broome
Affiliation:
Imperial Chemical Industries PLC, Pharmaceuticals Division, Alderley Park, Macclesfield, Cheshire SKI0 4TG
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Studies on the quantitative significance of protozoa on carbon and nitrogen digestion and metabolism in the rumen were carried out in sheep given a diet of pelleted concentrate (500 g/d) and chopped hay (500 g/d).

2. Measurements were made of apparent digestibility; flows of organic matter and dietary and microbial non-ammonia N (NAN) (using 15NH+4) to the duodenum; and rates of production, interconversion and metabolism of the major C fermentation end-products (from mathematical modelling of 14C isotope values).

3. The population density of bacteria in the rumen increased as a result of defamation (28.6 compared with 8.2 x 10° organisms/ml). This high density was associated with greater utilization of volatile fatty acids (VFA) within the rumen.

4. The rate of irreversible loss (IL) of bicarbonatefcarbon dioxide from the rumen was greater in the defaunated animals (98.5 v. 57.2 g C/d) but the IL from the blood was greater in the faunated group (138.6 v. 106.1 g C/d). This is consistent with the hypothesis that the high population density of bacteria found in the rumen fluid of defaunated animals may result in increased fermentation of rumen VFA and digestible dietary carbohydrate, thereby increasing the output of CO2 from the rumen and reducing the quantity of VFA (hence energy) available to the host.

5. There was no difference in the flow of organic matter (OM) to the duodenum but there was a higher faecal excretion of OM in defaunated animals (apparent OM digestibility: 0.72 in faunated, 0.67 in defaunated).

6. Defamation did not significantly increase the flow of NAN to the duodenum, the percentage of duodenal NAN of bacterial origin or the quantity of microbial NAN synthesized/g organic matter fermented. Faecal excretion of NAN was higher in defaunated animals (5.3 v. 3.6 g N/d).

Type
Research Article
Copyright
Copyright © The Nutrition Society 1985

References

Agricultural research council (1980). The nutrient requirements of ruminant livestock. Slough: Commonwealth agricultural bureaux.Google Scholar
Bergen, W. G. & Yokoyama, M. T. (1977). Journal of Animal Science 46, 573584.CrossRefGoogle Scholar
Binnerts, W. J., Van't Klooster, A. Th. & Frens, A. M. (1968). Veterinary Record 82, 470.Google Scholar
Bird, S. H., Baigent, D. R., Dixon, R. M. & Leng, R. A. (1978). Proceedings of the Australian Society for Animal Production 12, 137.Google Scholar
Bird, S. H. & Leng, R. A. (1978). British Journal of Nutrition 40, 163167.CrossRefGoogle Scholar
Bryant, M. P. (1979). Journal of Animal Science 48, 193.CrossRefGoogle Scholar
Coleman, G. S. (1975). In Digestion and metabolism in the ruminant, pp. 149164 [Mcdonald, J. W. and Warner, A. C. I. editors]. Armidale: University of new england publishing unit.Google Scholar
Coleman, G. S. (1980). Advances in Parasitology 18, 121173.CrossRefGoogle Scholar
Czerkawski, J. W. & Clapperton, J. L. (1968). Laboratory Practice 17, 994996.Google Scholar
Demeyer, D. I. & Van Nevel, C. J. (1979). British Journal of Nutrition 42, 515524.CrossRefGoogle Scholar
Eadie, J. & Gill, J. C. (1971). British Journal of Nutrition 26, 155167.CrossRefGoogle Scholar
Esdale, W. J. & Satter, L. D. (1972). Journal of Dairy Science 55, 964970.CrossRefGoogle Scholar
Faichney, G. J. (1975). In Digestion and metabolism in the ruminant, pp 277291 [Mcdonald, I. W. and Warner, A. C. I. editors]. Armidale: University of new england publishing unit.Google Scholar
Harrison, D. G., Beever, D. E. & Osbourne, D. F. (1979). British Journal of Nutrition 41, 521527.CrossRefGoogle Scholar
Hungate, R. E. (1966). The rumen and its microbes. New york: Academic press.Google Scholar
Klopfenstein, T. J., Purser, D. B. & Tyznik, W. J. (1966). Journal of Animal Science 25, 765773.CrossRefGoogle Scholar
Kurihara, Y., Takechi, T. & Shibata, F. (1978). Journal of Agricultural Science, Cambridge 90, 373381.CrossRefGoogle Scholar
Leng, R. A. (1970). In Physiology of digestion and metabolism in the ruminant, pp. 406421 [Philipson, A. T. editor]. Newcastle upon tyne: Oriel press.Google Scholar
Leng, R. A. (1976). In Reviews in rural science no. 2, from plant to animal protein, pp. 8591 [Sutherland, T. M., Mcwilliams, J. R. and Leng, R. A., editors]. Armidale: University of new england publishing unit.Google Scholar
Leng, R. A. (1982). In Nutritional limits to animal production from pastures, pp. 427453 [Hacker, J. B. editor]. Farnham royal: Commonwealth agricultural bureaux.Google Scholar
Leng, R. A., Gill, M., Kempton, T. J., Rowe, J. B., Nolan, J. V., Stachiw, S. J. & Preston, T. R. (1981). British Journal of Nutrition 46, 371384.CrossRefGoogle Scholar
Leng, R. A. & Leonard, C. J. (1965). British Journal of Nutrition 19, 469484.CrossRefGoogle Scholar
Lindsay, J. R. & Hogan, J. P. (1972). Australian Journal of Agricultural Research 23, 321330.CrossRefGoogle Scholar
MacRae, J. C. & Armstrong, D. G. (1968). Journal of the Science of Food and Agriculture 19, 578582.CrossRefGoogle Scholar
Mayes, R. W., Milne, J. A., Lamb, C. S. & Spence, A. M. (1981). Proceedings of the Nutrition Society 40, 9A.Google Scholar
Nolan, J. V. & Leng, R. A. (1972). British Journal of Nutrition 27, 177194.CrossRefGoogle Scholar
Nolan, J. V., Norton, B. W. & Leng, R. A. (1976). British Journal of Nutrition 35, 127147.CrossRefGoogle Scholar
Orpin, C. G. (1977). Journal of Applied Bacteriology 43, 309318.CrossRefGoogle Scholar
Rowe, J. B., Davies, A. & Broome, A. W. J. (1981). Proceedings of the Nutrition Society 40, 49A.Google Scholar
Rowe, J. B., Davies, A., Hinchliffe, P. M. & Broome, A. W. J. (1982). Laboratory Practice 31, 2324.Google Scholar
Rowe, J. B., Loughnan, M. L., Nolan, J. V. & Leng, R. A. (1979). British Journal of Nutrition 41, 393397.CrossRefGoogle Scholar
Stanier, G. & Davies, A. (1981). British Journal of Nutrition 45, 567578.CrossRefGoogle Scholar
Stumm, C. K., Gijzen, H. J. & Vogels, G. D. (1982). British Journal of Nutrition 47, 9599.CrossRefGoogle Scholar
Tan, T. N., Weston, R. H. & Hogan, J. P. (1971). International Journal of Radiation and Isotopes 22, 301308.CrossRefGoogle Scholar
Warner, A. C. I. (1962). Journal of General Microbiology 28, 129146.CrossRefGoogle Scholar
Weller, R. A. & Pilgrim, A. F. (1974). British Journal of Nutrition 32, 341351.CrossRefGoogle Scholar
Whitelaw, F. G., Eadie, M. J., Bruce, L. A. & Shand, W. J. (1983). Proceedings of the Nutrition Society 42, 158A.Google Scholar
Whitelaw, F. G., Eadie, M. J., Bruce, L. A. & Shand, W. J. (1984). British Journal of Nutrition 52, 261275.CrossRefGoogle Scholar
Whitelaw, F. G., Eadie, M. J., Mann, S. O. & Reid, R. S. (1972). British Journal of Nutrition 27, 425437.CrossRefGoogle Scholar