Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-25T13:11:17.479Z Has data issue: false hasContentIssue false

Refection in rats fed on a sucrose-based, riboflavin-deficient diet

Published online by Cambridge University Press:  25 February 2008

A. M. Prentice
Affiliation:
Dunn Nutrition Unit, University of Cambridge and Medical Research Council, Cambridge
C. J. Bates
Affiliation:
Dunn Nutrition Unit, University of Cambridge and Medical Research Council, Cambridge
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Refection, resulting in an increased supply of riboflavin to riboflavin-deficient rats through coprophagy, was demonstrated on a sucrose-based diet when sensitive biochemical tests of riboflavin status were employed: these included measurements of NAD(P)H2:glutathione oxidoreductase (EC 1.6.4.2); succinate:(acceptor) oxidoreductase (EC 1.3.99.1) and NADH:(acceptor) oxidoreductase (EC 1.6.99.3).

2. The use of tail-cups to eliminate coprophagy, and hence refection, resulted in a more rapid and reproducible progress into severe deficiency.

3. The occurrence of refection on a sucrose-based diet may account for hitherto unexplained differences between previous publications on the biochemical effects of riboflavin deficiency.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1980

References

REFERENCES

Arrigoni, O. & Singer, T. P. (1962). Nature, Lond. 193, 1256.CrossRefGoogle Scholar
Bamji, M. S. (1969). Clinica chim. Acta 26, 263.CrossRefGoogle Scholar
Bamji, M. S. & Sharada, D. (1972). J. Nutr. 102 443.CrossRefGoogle Scholar
Barnes, R. H., Fiala, G. & Kwong, E. (1963). Fedn Proc. Fedn Am. Socs exp. Biol. 22, 125.Google Scholar
Barton-Wright, E. C. (1961). Lab. Pract. 10,543.Google Scholar
Beutler, E. (1969). J. clin. Invest. 48, 1957.CrossRefGoogle Scholar
Burch, H. B., Hunter, E. F., Combs, A. M. & Schutz, B. A. (1960). J. biol. Chem. 235, 1540.CrossRefGoogle Scholar
Clarke, H. E., Coates, M. E., Eva, J. K., Ford, D. J., Milner, C. K., O'Donaghue, P. N., Scott, P. P. & Ward, R. J. (1977). Lab. Anim. 11, 1.CrossRefGoogle Scholar
Czaczkes, J. W. & Guggenheim, K. (1946). J. biol. Chem. 162, 267.CrossRefGoogle Scholar
De, H. N. & Roy, J. K. (1951). Indian J. med. Res. 39, 73.Google Scholar
Faulkner, R. D. & Lambooy, J. P. (1961). J. Nutr. 75, 373.CrossRefGoogle Scholar
Fridericia, L. S., Freudenthal, P., Gudjonnsen, S., Johansen, G. & Schoubye, N. (1928). J. Hyg., Camb. 27, 70.CrossRefGoogle Scholar
Glatzle, D., Körner, W. F., Christeller, S. & Wiss, O. (1970). Z. VitaminForsch 40, 166.Google Scholar
Glatzle, D., Weiser, H., Weber, F. & Wiss, O. (1973). Int Z. VitaminForsch 43, 187.Google Scholar
Greenfield, H., Briggs, G. M., Watson, R. H. J. & Yudkin, J. (1969). Proc. Nutr. Soc. 28, 43A.Google Scholar
Guerrant, N. B., Dutcher, R. A. & Tomey, L. F. (1935). J. biol. Chem. 110, 233.CrossRefGoogle Scholar
Kopaczyk, K. C. (1967). Meth. Enzym. 10,253.CrossRefGoogle Scholar
Mannering, G. J., Lipton, M. A. and Elvehjem, C. A. (1941). Proc. Soc. exp. Biol. Med. 46, 100.CrossRefGoogle Scholar
Mannering, G. J., Orsini, D. & Elvehjem, C. A. (1944). J. Nutr. 28, 141.CrossRefGoogle Scholar
Prentice, A. M. (1977). The biochemical effects of riboflavin deficiency. PhD Thesis, University of Cambridge.Google Scholar
Roscoe, M. H. (1928). J. Hyg. Camb. 27, 103.CrossRefGoogle Scholar
Sarett, H. P., Klein, J. R. & Perlzweig, W. A. (1942). J. Nutr. 24, 295.CrossRefGoogle Scholar
Shaw, J. H. & Phillips, P. H. (1941). J. Nutr. 22, 345.CrossRefGoogle Scholar
Tange, U. (1941). J. Agric. Chem. Soc. Japan 17, 1050.Google Scholar
Thurnham, D. L., Migasena, P. & Pavapootanon, N. (1970). Mikrochirn. Acta. 5,988.CrossRefGoogle Scholar
Tillotson, J. A. & Sauberlich, H. E. (1971). J. Nutr. 101, 1459.CrossRefGoogle Scholar