Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-14T14:56:17.689Z Has data issue: false hasContentIssue false

Chemical and biological assays for quantification of major plant secondary metabolites

Published online by Cambridge University Press:  27 February 2018

Harinder P.S. Makkar*
Affiliation:
Animal Production and Health Section, Joint FAO/IAEA Division, International Atomic Energy Agency, Vienna, Austria
Get access

Summary

During grazing, animals interact with many compounds in the diet. Plant secondary metabolites (PSM) such as tannins, saponins, cyanogenic glycosides, mimosine. could have wide ranging effects –beneficial or harmful, depending on the nature, quantity in the plant, and amount and rate of ingestion of the PSM. A wide range of methods is available to quantify these PSM. The methods presented for tannins are based on the oxidation-reduction, metal complexing, polyethylene glycol binding and protein precipitation/binding principles of tannins. A tannin bioassay based on in vitro gas production using a medium containing rumen microbes, and incubation of the plant sample with and without polyethylene glycol (a tannin-inactivating agent) is also discussed. Saponins have haemolitic activity, and a qualitative and a quantitative assay are based on this property are described, in addition to a spectrophotometric assay. Cyanogenic glycosides are measured using picric acid methods with and without distillation. The methods described for mimosine determination are based on its reaction with ferric chloride and diazotised p-nitroaniline. Alkaloids are a chemically heterogeneous group of compounds. Therefore, it is difficult to assay alkaloids using a single method. An approach, for qualitative assessment of alkaloids in feeds and forages, based on the use of various spray reagents on the developed TLC plate or a paper chromatographic paper is presented.

Resumen

Resumen

Durante el pastoreo, los animales interactúan con muchos compuestos en la dieta. Los metabolitos secundarios de las plantas (MSP) tales como los taninos, saponinas, glicosidos cyanogénicos y mimosina pueden tener un amplio rango de efectos –benéficos ó dañinos dependiendo de la naturaleza y cantidad en la planta así como la cantidad y tasa de ingestión de los MSP. Una amplia variedad de métodos están disponibles para cuantificar estos MSP. Los métodos presentados para taninos están basados en la oxidación-reducción, complejamiento de metales, acoplamiento de polietilen glicol y principios de precipitación/acoplamiento de taninos. También se discute un bioensayo de taninos basado en la producción de gas in vitro que utiliza un medio que contiene microbios ruminales e incubación de muestras de plantas con o sin polietilen glicol (un agente inactivador de taninos). Las saponinas tienen actividad hemolítica y se describen un ensayo cualitativo y cuantitativo basado en esta propiedad, además de un ensayo espectrofotométrico. Los glicósidos cianogénicos son medidos usando métodos de ácido pícrico con y sin destilación. Los métodos descritos para la determinación de mimosina están basados en su reacción con el cloruro férrico y pnitroanilina diazotisada. Los alcaloides son un grupo de compuestos químicamente heterogeneos. Por lo tanto, es difícil realizar pruebas de alcaloides usando un solo método. Se presenta una forma de enfrentar esto, para la determinación cualitativa de alcaloides en alimentos y forrajes que se basa en el uso de varios reactivos atomizados en el plato TLC desarrollado ó en un papel cromatográfico.

Type
Posters
Copyright
Copyright © British Society of Animal Science 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bradbury, M. G., Egan, S. V. and Bradbury, J. H. (1999). Picrate paper kits for determination of total cyanogens in cassava roots and all forms of cyanogens in cassava products. Journal of the Science of Food and Agriculture 79: 593601 Google Scholar
Broadhurst, R.B. and Jones, W.T. (1978) Analysis of condensed tannins using acidified vanillin. Journal of the Science of Food and Agriculture 29: 788794 Google Scholar
Burbano, C., Muzquiz, M., Ayet, G., Cuadrado, and C., , Pedrosa, M. M. (1999). Evaluation of antinutritional factors of selected varities of Phaseolus vulgaris. Journal of the Science of Food and Agriculture 79: 14681472 Google Scholar
Clarke, E. G. C. (1970). The forensic chemistry of alkaloids. In The Alkaloids, Ed. Manske, H. F., Vol. XII, Academic Press, New York, pp. 514590 Google Scholar
Dawra, R.K., Makkar, H.P.S. and Singh, B. (1988). Protein binding capacity of microquantities of tannins. Analytical Biochemistry 170: 5053 CrossRefGoogle ScholarPubMed
Egan, S. V., Yeoh, H. H. and Bradbury, J. H. (1998). Simple picrate paper kit for determination of the cyanogenic potential of cassava flour. Journal of the Science of Food and Agriculture 76: 3948 Google Scholar
Francis, G., Kerem, Z., Makkar, H. P. S. and Becker, K. (2002). The biological action of saponins in animal systems: a review. British Journal of Nutrition 88: 587605 CrossRefGoogle ScholarPubMed
Gamble, G.R., Akin, D.E., Makkar, H.P.S. and Becker, K. (1996). Biological degradation of tannins in Sericea Lespedeza by the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus analyzed by solid state 13C NMR spectroscopy. AppliedEnvironmental Microbiology 62: 36003604 Google Scholar
Getachew, G., Makkar, H.P.S. and Becker, K. (2002). Tropical browses: contents of phenolic compounds, in vitro gas production, and stoichiometrical relationship between short chain fatty acid and in vitro gas production, Journal of Agricultural Science, Cambridge 139: 341352 CrossRefGoogle Scholar
Getachew, G., Makkar, H.P.S. and Becker, K. (2000). Effect of polyethylene glycol on in vitro degradability of nitrogen and microbial protein synthesis from tannin-rich browse and herbaceous legumes. British Journal of Nutrition 84: 7383 CrossRefGoogle ScholarPubMed
Goodchild, A.V., El Haramein, F.J., Makkar, H.P.S., El Monein, A. A. and Williams, P.C. (1997). 18th International Conference on Near-Infrared Spectroscopy, September 15–19, Haus der Technik, Essen, GermanyGoogle Scholar
Hagerman, A.E. (1987). Radial diffusion method for determining tannin in plant extracts. Journal of Chemical Ecolology 13: 437449 Google Scholar
Hagerman, A.E. and Butler, L.G. (1978). Protein precipitation method for the quantitative determination of tannins. Journal of Agriculture and Food Chemistry 26: 809812 CrossRefGoogle Scholar
Hagerman, A.E. and Butler, L.G. (1980). Determination of protein in tannin-protein precipitates. Journal of Agriculture and Food Chemistry 28: 944947 CrossRefGoogle ScholarPubMed
Haque, M. and Bradbury, J. H. (2002). Total cyanide determination of plants and foods using the picrate and acid hydrolysis methods. Food Chemistry 77: 107114 Google Scholar
Harborne, J. B. (1991). Phytochemical methods, Chapman and Hall, London, UK.Google Scholar
Hartzfeld, P.W., Forkner, R., Hunter, M.D. and Hagerman, A.E. (2002). Determination of Hydrolyzable Tannins (Gallotannins and Ellagitannins) after Reaction with Potassium Iodate. Journal of Agriculture and Food Chemistry 50: 17851790 Google Scholar
Hegarty, M. P., Court, R. D. and Thorne, M. (1964). The determination of mimosine and 3,4-dihydroxypyridine in biological material. Australian Journal of Agriculture Research 15: 168179 Google Scholar
Henson, G.L., Niemeyer, L., Ansong, G., Forkner, R., Makkar, H.P.S., and Hagerman, A.E. (2003). Modified method for determining protein binding capacity of plant polyphenolics using radiolabeled protein. Phytochemical Analysis (In press)Google Scholar
Hiai, S., Oura, H. and Nakajima, T. (1976). Color reaction of some sapogenins and saponins with vanillin and sulphuric acid. Planta Medica 29: 116122 Google Scholar
Hoffmann, E.M., Muetzel, S. and Becker, K. (2002). A modified dotblot method of protein determination applied in the tanninprotein precipitation assay to facilitate the evaluation of tannin activity in animal feeds. British Journal of Nutrition 87: 421 426 Google Scholar
Inoue, K.H. and Hagerman, A.E. (1988). Determination of gallotannins with rhodanine. Analytical Biochemistry 169: 363369 Google Scholar
Jackson, M. L. (1967). Cyanide in plant tissue. In Soil Chemical Analysis. Asia Publishing House, New Delhi, p. 337.Google Scholar
Jones, R.J., Meyer, J.H.F., Bechaz, M. and Stoltz, M.A. (2000). An approach to screening potential pasture species for condensed tannin activity. Animal Feed Science and Technology 85: 269277 Google Scholar
Lalitha, K., Vargheese, C. M. and Balasubramanian, N. (1993). Spectrophotometric determination of mimosine and 3-hydroxy- 4-(1H)-pyridone-the toxic principles of Leucaena leucocephala. Analytical Biochemistry 213: 5762 Google Scholar
Lowry, J.B. and Sumpter, E.A. (1990). Problems with ytterbium precipitation as a method for determination of plant phenolics. Journal of the Science of Food and Agriculture 52: 287288 Google Scholar
Makkar, H.P.S. (2003). Quantification of tannins in tree and shrub foliage. Kluwer Academic Press, p. 102 Google Scholar
Makkar, H.P.S. and Singh, B. (1995). Determination of condensed tannins in complexes with fibre and proteins. Journal of the Science of Food and Agriculture 69: 129132 Google Scholar
Makkar, H.P.S., Blummel, M., Borowy, N.K. and Becker, K. (1993). Gravimetric determination of tannins and their correlations with chemical and protein prccipitation methods. Journal of the Science of Food Agriculture 61: 161165 Google Scholar
Makkar, H.P.S., Blümmel, M. and Becker, K. (1995). Formation of complexes between polyvinyl pyrrolidone and polethylene glycol with tannins and their implications in gas production and true digestibility in in vitro techniques. British Journal of Nutrition 73: 897913 CrossRefGoogle Scholar
Makkar, H.P.S., Dawra, R.K. and Singh, B. (1987). Protein precipitation assay for quantitation of tannins: Determination of protein in tannin-protein complex. Analytical Biochemistry 166: 435439 Google Scholar
Makkar, H.P.S., Dawra, R.K. and Singh, B. (1988). Determination of both tannin and protein in a tannin-protein complex. Journal of Agriculture and Food Chemistry 36: 523525 Google Scholar
Makkar, H.P.S., Gamble, G. and Becker, K. (1999). Limitation of the butanol-hydrochloric acid-iron assay for bound condensed tannins. Food Chemistry 66: 129133 Google Scholar
Matthews, S., Mila, I., Scalbert, A., Pollet, B., Lapierre, C., Herve Du Penhoat, C.L.M., Rolando, C. and Donnelly, D.M.X. (1997). Method of estimation of proanthocyanidins based on their acid depolymerization in the presence of nucleophiles. Journal of Agriculture and Food Chemistry 45: 11951201 Google Scholar
Matsumoto, H. and Sherman, G. D. (1951). A rapid colorimetric method for the determination of mimosine. Archives of Biochemistry and Biophysics 33: 195200 Google Scholar
McSweeney, C.S., Makkar, H.P.S. and Reed, J.D. (2003). Modification of rumen fementation to reduce adverse effects of phytochemicals. In: Proceedings of the Sixth International Symposium on the Nutrition of Herbivores. Edited by Mannetje, L.’t, Ramirez-Aviles, , Sandoval-Castro, and Ku-Vera, J.C., Merida, Mexico, 19-24 October, pp. 239270 Google Scholar
Peng, S., Scalbert, A. and Monties, B. (1991). Insoluble ellagitannins in Castanea sativa and Quercus petraea woods. Phytochemistry 30: 775778 Google Scholar
Porter, L.J., Hrstich, L.N. and Chan, B.G. (1986). The conversion of procyanidin and prodelphinidins to cyaniding and delphinidin. Phytochemistry 25: 223230 Google Scholar
Price, M.L., Van Scoyoc, S. and Butler, L.G. (1978). A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. Journal of Agriculture and Food Chemistry 26: 12141218 Google Scholar
Reed, J.D., Horvath, P.J., Allen, M.S. and Van Soest, P.J. (1985). Gravimetric determination of soluble phenolics including tannins from leaves by precipitation with trivalent ytterbium. Journal of the Science of Food and Agriculture 36: 255261 Google Scholar
Siddhuraju, P., Becker, K. and Makkar, H. P. S. (2002). Chemical composition, protein fractionation, essential amino acid potential and antimetabolic constituents of an unconventional legume, Gila bean (Entada phaseoloides Merrill) seed kernel. Journal of the Science of Food and Agriculture 82: 192202 Google Scholar
Silanikove, N., Perevolotsky, A. and Provenza, F.D. (2001). Use of tannin-binding chemicals to assay for tannins and their negative postingestive effects in ruminants. Animal Feed Science and Technology 91: 6981 CrossRefGoogle Scholar
Terrill, T.H., Rowan, A.M., Doughlas, G.B. and Barry, T.N. (1992). Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grains. Journal of the Science of Food and Agriculture 58: 321329 Google Scholar