Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-17T00:38:30.537Z Has data issue: false hasContentIssue false

The rôle of the gastrointestinal tract in the control of voluntary food intake

Published online by Cambridge University Press:  27 February 2018

D. V. Rayner
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
P. C. Gregory
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Get access

Abstract

The short-term regulation of intake is thought to be achieved at least in part by signals from the gastrointestinal tract. Infusions of glucose, protein hydrolysate or emulsified fat into the stomach, and of glucose or protein hydrolysate into the duodenum, jejunum or ileum caused pigs to reduce their intake to compensate approximately for the energy infused, probably through the regulation of gastric emptying. Protein or protein hydrolysate infusions also caused a long-term inhibition of intake for 30 h by up to three times the energy infused. During feeding gastric emptying occurred at a constant rate of calories, the rate increasing linearly with body weight; duodenal infusion of glucose slowed gastric emptying to compensate for the infused energy and satiety occurred at a reduced food intake but at the same stomach volume. Duodenal infusion of emulsified fat caused a greater than caloric inhibition of intake, which was blocked by the cholecystokinin (CCK) antagonist L-364,718 and appeared to be mediated through a mono-glyceride-induced CCK release. Emulsified fat infused into the duodenum slowed gastric emptying by more than the energy infused and the gastric volume at satiety was decreased suggesting that the effects of fats on intake are possibly independent of gastric emptying. Since L-364,718 did not increase intake on a normal diet (186 g protein, 20 g fat per kg), CCK may only contribute to satiety in pigs eating high-fat diets.

Type
Research Article
Copyright
Copyright © British Society of Animal Production 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, W. H. H. and Orbach, J. 1974. Sodium receptors activating some nerves of perfused rabbit livers. American Journal of Physiology 221: 12731275.CrossRefGoogle Scholar
Anika, S. M., Houpt, T. R. and Houpt, K. A. 1981. Cholecystokinin and satiety in pigs. American Journal of Physiology 240: R310R318.Google ScholarPubMed
Baile, C. A., McLaughlin, C. L. and Della-Fera, M. A. 1986. Role of cholecystokinin and opioid peptides in the control of food intake. Physiological Reviews 66: 172234.CrossRefGoogle ScholarPubMed
Baldwin, B. A., Cooper, T. R. and Parrott, R. F. 1983. Intravenous cholecystokinin octapeptide in pigs reduces operant responding for food, water, sucrose solution or radiant heat. Physiology and Behavior 30: 399403.CrossRefGoogle ScholarPubMed
Brener, W., Hendrix, T. R. and McHugh, P. R. 1983. Regulation of the gastric emptying of glucose. Gastroenterology, Baltimore 85: 7682.CrossRefGoogle ScholarPubMed
Camilleri, M., Malagelada, J.-R., Brown, M. L., Becker, G. and Zinsmeister, A. R. 1985. Relation between antral motility and gastric emptying of solids and liquids in humans. American Journal of Physiology 249: G580G585.Google ScholarPubMed
Campbell, R. G. and Taverner, M. R. 1986. The effects of dietary fibre, source of fat and dietary energy concentration on the voluntary food intake and performance of growing pigs. Animal Production 43: 327333.Google Scholar
Cooke, A. R. 1975. Control of gastric emptying and motility. Gastroenterology, Baltimore 68: 804816.CrossRefGoogle ScholarPubMed
Debas, H. T., Farooq, O. and Grossman, M. I. 1975. Inhibition of gastric emptying is a physiological action of cholecystokinin. Gastroenterology, Baltimore 68: 12111217.CrossRefGoogle ScholarPubMed
Deutsch, J. A. 1985. The role of the stomach in eating. American Journal of Clinical Nutrition 42: 10401043.CrossRefGoogle ScholarPubMed
Deutsch, J. A. and Gonzalez, M. F. 1981. Gastric fat content and satiety. Physiology and Behavior 26: 673676.CrossRefGoogle ScholarPubMed
Geliebter, A., Westreich, S., Gage, D. and Hashim, S. A. 1986. Intragastric balloon reduces food intake and body weight in rats. American Journal of Physiology 251: R794R797.Google ScholarPubMed
Gibbs, J., Young, R. C. and Smith, G. P. 1973. Cholecystokinin decreases food intake in rats. Journal of Comparative and Physiological Psychology 84: 488495.CrossRefGoogle ScholarPubMed
Gregory, P. C., McFadyen, M. and Rayner, D. V. 1987. The influence of gastrointestinal infusion of glucose on regulation of food intake in pigs. Quarterly Journal of Experimental Physiology 72: 525535.CrossRefGoogle ScholarPubMed
Gregory, P. C., McFadyen, M. and Rayner, D. V. 1988a. Regulation of stomach emptying in pigs. Journal of Physiology 396: 18P.Google Scholar
Gregory, P. C., McFadyen, M. and Rayner, D. V. 1988b. Control of gastric emptying in the pig: influence of duodenal infusions of glucose and intralipid. Quarterly Journal of Experimental Physiology 74: 109119.CrossRefGoogle Scholar
Gregory, P. C. and Rayner, V. 1985. Stomach emptying of solids in the pig: relation to feeding. Digestive Diseases and Science 30: 771 (Abstr.).Google Scholar
Gregory, P. C. and Rayner, D. V. 1986a. Influence of gastrointestinal infusions of fats on short term regulation of food intake in pigs. Appetite 7: 262 (Abstr.).Google Scholar
Gregory, P. C. and Rayner, D. V. 1986b. The role of stomach emptying in short-term control of food intake in pigs. Journal of Physiology 378: 25P.Google Scholar
Gregory, P. C. and Rayner, D. V. 1987. The influence of gastrointestinal infusion of fats on regulation of food intake in pigs. Journal of Physiology 385: 471481.CrossRefGoogle ScholarPubMed
Gregory, P. C., Rayner, V. and Wenham, G. 1986. The influence of intestinal infusion of fats on small intestinal motility and digesta transit in pigs. Journal of Physiology 379: 2737.CrossRefGoogle ScholarPubMed
Gibbs, J., Young, R. C. and Smith, G. P. 1973. Cholecystokinin decreases food intake in rats. Journal of Comparative and Physiological Psychology 84: 488495.CrossRefGoogle ScholarPubMed
Houpt, K. A., Houpt, T. R. and Pond, W. G. 1977. Food intake controls in the suckling pig: glucoprivation and gastrointestinal factors. American Journal of Physiology 232: E510E514.Google ScholarPubMed
Houpt, T. R. 1983. The sites of action of cholecystokinin in decreasing meal size in pigs. Physiology and Behavior 31: 693698.CrossRefGoogle ScholarPubMed
Houpt, T. R., Anika, S. M. and Houpt, K. A. 1979. Preabsorptive intestinal satiety controls of food intake in pigs. American Journal of Physiology 236: R328R337.Google ScholarPubMed
Houpt, T. R., Baldwin, B. A. and Houpt, K. A. 1983. Effect of duodenal osmotic loads on spontaneous meals in pigs. Physiology and Behavior 30: 787795.CrossRefGoogle ScholarPubMed
Houpt, T. R., Houpt, K. A. and Swan, A. A. 1983. Duodenal osmoconcentration and food intake in pigs after ingestion of hypertonic nutrients. American Journal of Physiology 245: R181R189.Google ScholarPubMed
Janowitz, H. D. and Grossman, M. I. 1949. Some factors affecting the food intake of normal dogs and dogs with esophagostomy and gastric fistula. American Journal of Physiology 159: 143148.CrossRefGoogle ScholarPubMed
Koopmans, H. S. 1983. A stomach hormone that inhibits food intake. Journal of the Autonomic Nervous System 9: 157171.CrossRefGoogle ScholarPubMed
Koopmans, H. S. 1984. Hepatic control of food intake. Appetite 5: 127131.CrossRefGoogle ScholarPubMed
Koopmans, H. S. 1985. Internal signals cause large changes in food intake in one-way crossed intestines rats. Brain Research Bulletin 14: 595603.CrossRefGoogle ScholarPubMed
Langhans, W., Damaske, U. and Scharrer, E. 1985. Different metabolites might reduce food intake by mitochondrial generation of reducing equivalents. Appetite 6: 143152.CrossRefGoogle ScholarPubMed
Langhans, W., Egli, G. and Scharrer, E. 1985. Regulation of food intake by hepatic oxidative metabolism. Brain Research Bulletin 15: 425428.CrossRefGoogle ScholarPubMed
Laplace, J. P., Pons, O., Cuber, J. C. and Kaboré, C. 1985. Evacuation gastrique de l'orge et du blé chez le porc. Annales de Zootechnie 34: 265282.CrossRefGoogle Scholar
Liddle, R. A., Green, G. M., Conrad, C. K. and Williams, J. A. 1986. Proteins but not amino acids, carbohydrates or fats stimulate cholecystokinin secretion in the rat. American Journal of Physiology 251: G243G248.Google ScholarPubMed
Liddle, R. A., Morita, E. T., Conrad, C. K. and Williams, J. A. 1986. Regulation of gastric emptying in humans by cholecystokinin. Journal of Clinical Investigation 77: 992996.CrossRefGoogle ScholarPubMed
Low, A. G., Pittman, R. J. and Elliot, R. J. 1985. Gastric emptying of barley-soya-bean diets in pig: effects of feeding level, supplementary maize oil, sucrose or cellulose, and water intake. British Journal of Nutrition 54: 437447.CrossRefGoogle ScholarPubMed
McHugh, P. R. and Moran, T. H. 1979. Calories and gastric emptying: a regulatory capacity with implications for feeding. American Journal of Physiology 236: R254R260.Google ScholarPubMed
McHugh, P. R. and Moran, T. H. 1986. The stomach, cholecystokinin, and satiety. Federation Proceedings 45: 13841390.Google ScholarPubMed
McHugh, P. R., Moran, T. H. and Barton, G. N. 1975. Satiety: a graded behavioural phenomenon regulating caloric intake. Science, New York 190: 167169.CrossRefGoogle ScholarPubMed
Meyer, J. H. and Jones, R. S. 1974. Canine pancreatic response to intestinally perfused fat and products of fat digestion. American Journal of Physiology 226: 11781187.CrossRefGoogle ScholarPubMed
Moran, T. H. and McHugh, P. R. 1982. Cholecystokinin suppresses food intake by inhibiting gastric emptying. American Journal of Physiology 242: R491497.Google ScholarPubMed
Niijima, A. 1969a. Afferent impulse discharges from glucoreceptors in the liver of the guinea pig. Annals of the New York Academy of Sciences 157: 690700.CrossRefGoogle ScholarPubMed
Niijima, A. 1969b. Afferent discharges from osmoreceptors in the liver of the guinea pig. Science, New York 166: 15191520.CrossRefGoogle ScholarPubMed
Noblet, J. and Henry, Y. 1977. Conséquences d'une réduction du taux de matières azotées sur le niveau de consommation et les performances de croissance chez le porc selon l'équilibre en acides aminés et la concentration en énergie du régime. Annales de Zootechnie 26: 379394.CrossRefGoogle Scholar
Noblet, J., Henry, Y. and Bourdon, D. 1980. Influence d'une réduction du taux d'azote indifférencié sur le niveau d'ingestion alimentaire et les performances de croissance du porc femelle, selon la concentration et la nature des substrats énergétiques dans le régime. Annales de Zootechnie 29: 103119.CrossRefGoogle Scholar
Novin, D., Sanderson, J. D. and Vanderweele, D. A. 1974. The effect of isotonic glucose on eating as a function of feeding condition and infusion site. Physiology and Behavior 13: 37.CrossRefGoogle ScholarPubMed
Novin, D. and Vanderweele, D. A. 1977. Visceral involvement in feeding: there is more to regulation than the hypothalamus. In Progress in Psycho-biology and Physiological Psychology, Vol. 7 (ed. Sprague, J. M. and Epstein, A. N.), pp. 193241. Academic Press, New York.Google Scholar
Owen, J. B. and Ridgman, W. J. 1968. Further studies of the effect of dietary energy content on the voluntary intake of pigs. Animal Production 10: 8591.CrossRefGoogle Scholar
Pekas, J. C. 1983. Effect of gastric-feeding on feed consumption, growth, organ size, and body composition of swine. Appetite 4: 8795.CrossRefGoogle ScholarPubMed
Rayner, D. V. and Gregory, P. C. 1985. Gastrointestinal influences on short-term regulation of food intake in pigs. Proceedings of the Nutrition Society 44: 56A (Abstr.).Google Scholar
Rayner, D. V. and Gregory, P. C. 1986. Influence of gastrointestinal infusions of glucose on short-term regulation of food intake in pigs. Appetite 7: 289 (Abstr.).Google Scholar
Rayner, V. and Wenham, G. 1986. Small intestinal motility and transit by electromyography and radiology in the fasted and fed pig. Journal of Physiology 379: 245256.CrossRefGoogle ScholarPubMed
Rayner, V., Wenham, G., White, F., Rhind, S. M. and Bruce, J. B. 1980. Digesta transit by X-ray screening, glucose absorption, insulin secretion and the migrating myoelectric complex in the pig. In Gastrointestinal Motility (ed. Christensen, J.), pp. 253260. Raven Press, New York.Google Scholar
Read, N. W., McFarlane, A., Kinsman, R. I., Bates, T. E., Blackhall, N. W., Farrar, G. B. J., Hall, J. C., Moss, G., Morris, A. P., O'Neill, B., Welch, I., Lee, Y. and Bloom, S. R. 1984. Effect of infusion of nutrient solutions into the ileum on gastrointestinal transit and plasma levels of neurotensin and enteroglucagon. Gastroenterology, Baltimore 86: 274280.CrossRefGoogle ScholarPubMed
Rerat, A. A., Vaissade, P. and Vaugelade, P. 1984. Absorption kinetics of some carbohydrates in conscious pigs. 2. Quantitative aspects. British Journal of Nutrition 51: 517529.CrossRefGoogle ScholarPubMed
Russek, M. 1970. Demonstration of the influence of an heptaic glucosensitive mechanism on food intake. Physiology and Behavior 5: 12071209.CrossRefGoogle Scholar
Sawchenko, P. E. and Friedman, M. I. 1979. Sensory functions of the liver — a review. American Journal of Physiology 236: R5R20.Google ScholarPubMed
Shafer, R. B., Levine, A. S., Marlette, J. M. and Morley, J. E. 1985. Do calories, osmolality, or calcium determine gastric emptying? American Journal of Physiology 248: R479R483.Google ScholarPubMed
Shillabeer, G. and Davison, J. S. 1984. The cholecystokinin antagonist, proglumide, increases food intake in the rat. Regulatory Peptides 8: 171176.CrossRefGoogle ScholarPubMed
Shillabeer, G. and Davison, J. S. 1987. Endogenous and exogenous cholecystokinin may reduce food intake by different mechanisms. American Journal of Physiology 253: R379R382.Google ScholarPubMed
Silverman, M., Bank, S. and Lendval, S. 1987. The cholecystokinin receptor antagonist L-364,718 increases food consumption. Digestive Diseases and Sciences 32: 1188 (Abstr.).Google Scholar
Smith, G. P., Jerome, D., Cushin, B. J., Eterno, R. and Simanskv, K. J. 1981. Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science, Washington 213: 10361037.CrossRefGoogle ScholarPubMed
Stephens, D. B. 1980a. The effects of alimentary infusions of glucose, amino acids, or neutral fat on meal size in hungry pigs. Journal of Physiology 299: 453463.CrossRefGoogle ScholarPubMed
Stephens, D. B. 1980b. The effects of 2-deoxy-D-glucose given via the jugular or hepatic-portal vein on food intake and plasma glucose levels in pigs. Physiology and Behavior 25: 691697.CrossRefGoogle ScholarPubMed
Stephens, D. B. 1985. Influence of intraduodenal glucose on meal size and its modification by 2-deoxy-D-glucose or vagotomy in hungry pigs. Quarterly Journal of Experimental Physiology 70: 129135.CrossRefGoogle ScholarPubMed
Stephens, D. B. and Baldwin, B. A. 1974. The lack of effect of intrajugular or intraportal injections of glucose or amino-acids on food intake in pigs. Physiology and Behavior 12: 923929.CrossRefGoogle ScholarPubMed
Welch, I., Saunders, K. and Read, N. W. 1985. Effect of ileal and intravenous infusions of fat emulsions on feeding and satiety in human volunteers. Gastroenterology, Baltimore 89: 12931297.CrossRefGoogle ScholarPubMed
Wirth, J. B. and McHugh, P. R. 1983. Gastric distension and short-term satiety in the rhesus monkey. American Journal of Physiology 245: R174R180.Google ScholarPubMed