Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-16T02:57:26.897Z Has data issue: false hasContentIssue false

The abilities of the aphid parasitoids Aphidius ervi Haliday and A. rhopalosiphi De Stefani Perez (Hymenoptera: Braconidae) to transfer between different known host species and the implications for the use of alternative hosts in pest control strategies

Published online by Cambridge University Press:  10 July 2009

W. Powell
Affiliation:
AFRC, Institute of Arable Crops Research, Rothamsted Experimental Station, Harpenden, Herts, AL5 2JQ, UK
A. F. Wright
Affiliation:
AFRC, Institute of Arable Crops Research, Rothamsted Experimental Station, Harpenden, Herts, AL5 2JQ, UK

Abstract

A series of host-transfer trials using both laboratory-cultured and field-collected individuals of the aphid parasitoids Aphidius ervi Haliday and A. rhopalosiphi De Stefani Perez were done in order to clarify inconsistent results from several previous studies. A. ervi cultured on Acyrthosiphon pisum (Harris) produced very few mummies when confined with Microlophium carnosum (Buckton), whereas those cultured on M. carnosum produced as many mummies on A. pisum as they did on their original host. Mummy production was correlated with the attack rate of adult parasitoids on potential hosts. The production of mummies on M. carnosum by parasitoids reared on A. pisum was often greatly improved if their male parent had been reared on M. carnosum, suggesting that genotype strongly influences host preference. Aphidius rhopalosiphi from laboratory cultures produced significantly more mummies on Metopolophium dirhodum (Walker) than on Sitobion avenae (F.) regardless of their original host, but this preference was not shown by parasitoids from field populations. It is concluded that inadvertent selection occurs in laboratory cultures of aphid parasitoids as a result of low founder numbers, genetic drift and genetic bottlenecks and that this can strongly influence experimental results in biology and behaviour studies, which has important implications for biological control workers.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ankersmit, G. W. (1983). Aphidiids as parasites of the cereal aphids Sitobion avenae and Metopolophium dirhodum.—pp. 42–49 in Cavalloro, R. (Ed.). Aphid antagonists.—143 pp. Rotterdam, Balkema.Google Scholar
Cameron, P. J., Powell, W. & Loxdale, H. D. (1984). Reservoirs for Aphidius ervi Haliday (Hymenoptera: Aphidiidae), a polyphagous parasitoid of cereal aphids (Hemiptera: Aphididae).—Bull. ent. Res. 74, 647656.CrossRefGoogle Scholar
DeBach, P. (1958). Selective breeding to improve adaptations of parasitic insects.—Proc. 10th Int. Congr. Ent. 4, 759768.Google Scholar
Mackauer, M. (1972). Genetic aspects of insect production.—Entomophaga 17, 2748.CrossRefGoogle Scholar
Mackauer, M. (1976). Genetic problems in the production of biological control agents.—A. Rev. Ent. 21, 369385.CrossRefGoogle Scholar
Němec, V. & Starý, P. (1983). Elpho-morph differentiation in Aphidius ervi Hal. biotype on Microlophium carnosum (Bckt.) related to parasitization on Acyrthosiphon pisum (Harr.) (Hym., Aphidiidae).—Z. angew. Ent. 95, 524530.CrossRefGoogle Scholar
, V. & Starý, P. (1985). Genetic diversity of the parasitoid Aphidius ervi on the pea aphid, Acyrthosiphon pisum in Czechoslovakia (Hymenoptera, Aphidiidae; Homoptera, Aphididae).—Acta entomol. bohemoslov. 82, 8894.Google Scholar
Nordlund, D. A. (1987). Plant produced allelochemics and their involvement in the host selection behaviour of parasitoids.—pp. 103–107 in Labeyrie, V., Fabres, G. & Lachaise, D. (Eds). Insects—plants.—459 pp. Dordrecht, Junk.Google Scholar
Perrin, R. M. (1975). The role of the perennial stinging nettle, Urtica dioica, as a reservoir beneficial natural enemies.—Ann. appl. Biol. 81, 289297.CrossRefGoogle Scholar
Powell, W. (1986). Enhancing parasitoid activity in crops.—pp. 319–340 in Waage, J. & Greathead, D. (Eds). Insect parasitoids.—389 pp. London, Academic Press (Symp. R. Ent. Soc. Lond. no. 13).Google Scholar
Powell, W. & Zhang, Z. L. (1983). The reactions of two cereal aphid parasitoids, Aphidius uzbekistanicus and A. ervi to host aphids and their food-plants.—Physiol. Entomol. 8, 439443.CrossRefGoogle Scholar
Pungerl, N. B. (1984). Host preferences of Aphidius (Hymenoptera: Aphidiidae) populations parasitising pea and cereal aphids (Hemiptera: Aphididae).—Bull. ent. Res. 74, 153161.CrossRefGoogle Scholar
Read, D. P., Feeny, P. P. & Root, R. B. (1970). Habitat selection by the aphid parasite Diaeretiella rapae (Hymenoptera: Braconidae) and hyperparasite Charips brassicae (Hymenoptera: Cynipidae).—Can. Ent. 102, 15671578.CrossRefGoogle Scholar
Simmonds, F. J. (1963). Genetics and biological control.—Can. Ent. 95, 561567.CrossRefGoogle Scholar
Starý, P. (1983 a). The perennial stinging nettle (Urtica dioica) as a reservoir of aphid parasitoids (Hymenoptera, Aphidiidae).—Acta entomol. bohemoslov. 80, 8186.Google Scholar
Starý, P. (1983 b). Colour patterns of adults as evidence on Aphidius ervi biotypes in field environments (Hymenoptera. Aphidiidae).—Acta entomol. bohemoslov. 80, 377384.Google Scholar
Starý, P. (1986). Creeping thistle, Cirsium arvense, as a reservoir of aphid parasitoids (Hymenoptera, Aphidiidae) in agroecosystems.—Acta entomol. bohemoslov. 83, 425431.Google Scholar
Starý, P. & Němec, V. (1986). Common elder, Sambucus nigra, as a reservoir of aphids and parasitoids (Hymenoptera, Aphidiidae),—Acta entomol. bohemoslov. 83, 271278.Google Scholar
Starý, P., Pospíšil, J. & Němec, V. (1985). Integration of olfactometry and electrophoresis in the analysis of aphid parasitoid biotypes (Hym., Aphidiidae).—Z. angew. Ent. 99, 476482.CrossRefGoogle Scholar
Unruh, T. R., White, W., González, D., Gordh, G. & Luck, R. F. (1983). Heterozygosity and effective size in laboratory populations of Aphidius ervi (Hym.: Aphidiidae).—Entomophaga 28, 245258.CrossRefGoogle Scholar
van den Bosch, R. & Telford, A. D. (1964). Environmental modification and biological control.—pp. 459–488 in DeBach, P. (Ed.). Biological control of insect pests and weeds.—844 pp. London, Chapman & Hall.Google Scholar
White, E. B., DeBach, P. & Garber, M. J. (1970). Artificial selection for genetic adaptation to temperature extremes in Aphytis lingnanensis Compere (Hymenoptera: Aphelinidae).—Hilgardia 40, 161192.CrossRefGoogle Scholar
Wilkes, A. (1947). The effects of selective breeding on the laboratory propagation of insect parasites.—Proc. R. Soc. (B) 134, 227245.Google ScholarPubMed