Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-16T16:32:46.516Z Has data issue: false hasContentIssue false

Field and laboratory detection of the altered acetylcholinesterase resistance genes which confer organophosphate and carbamate resistance in mosquitoes (Diptera: Culicidae)

Published online by Cambridge University Press:  10 July 2009

J. Hemingway*
Affiliation:
Department of Entomology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
C. Smith
Affiliation:
Department of Entomology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
K. G. I. Jayawardena
Affiliation:
Antimalarial Campaign, Narahenpita, P.O. Box 1472, Colombo 5, Sri Lanka
P. R. J. Herath
Affiliation:
Antimalarial Campaign, Narahenpita, P.O. Box 1472, Colombo 5, Sri Lanka
*
To whom all correspondence should be sent.

Abstract

A simple field method for direct detection of an altered acetylcholinesterase (AChE)-type organophosphate and carbamate resistance mechanism in individual insects was developed. The test will allow accurate differentiation by eye, on the basis of a colour change, of homozygous-susceptible and heterozygous or homozygous-resistant individuals. In initial field trials of this test in Sri Lanka, Anopheles nigerrimus Giles and Culex tritaeniorhynchus Giles were shown to contain this type of resistance gene, while a further nine species of mosquito had no evidence of it. Frequencies of the altered AChE gene in A. nigerrimus were estimated to be higher than those of C. tritaeniorhynchus, where the gene was found in only one of three localities in the island. The implication of the increase in prevalence of the AChE resistance gene in mosquito populations is discussed.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayad, H. & Georghiou, G. P. (1975). Resistance to organophosphates and carbamates in Anopheles albimanus based on reduced sensitivity to acetylcholinesterase.—J. econ. Ent. 68, 295297.CrossRefGoogle ScholarPubMed
Curtis, C. F. & Pasteur, N. (1981). Organophosphate resistance in vector populations of the complex of Culex pipiens L. (Diptera: Culicidae).—Bull. ent. Res. 71, 153161.CrossRefGoogle Scholar
Devonshire, A. L. (1975). Studies of the acetylcholinesterase from houseflies (Musca domestica L.) resistant and susceptible to organophosphorus insecticides.—Biochem. J. 149, 463469.CrossRefGoogle ScholarPubMed
Eldefrawi, M. E., Tripathi, R. K. & O'Brien, R. D. (1970). Acetylcholinesterase isozymes from the housefly brain.—Biochem. Biophys. Acta 212, 308314.Google ScholarPubMed
Georghiou, G. P. & Pasteur, N. (1978). Electrophoretic esterase patterns in insecticide-resistant and susceptible mosquitoes.—J. econ. Ent. 71, 201205.CrossRefGoogle ScholarPubMed
Hama, H. & Iwata, T. (1971). Insensitive cholinesterase in the Nakagawara strain of the green rice leafhopper, Nephotettix cincticeps Uhler (Hemiptera: Cicadellidae), as a cause of resistance to carbamate insecticides.—Appl. Entomol. & Zool. 6, 183191.CrossRefGoogle Scholar
Hemingway, J. & Davidson, G. (1983). Resistance to organophosphate and carbamate insecticides in Anopheles atroparvus.—Parassitologia 25, 18.Google ScholarPubMed
Hemingway, J. & Georghiou, G. P. (1983). Studies on the acetylcholinesterase of Anopheles albimanus resistant and susceptible to organophosphate and carbamate insecticides.—Pestic. Biochem. & Physiol. 19, 167171.CrossRefGoogle Scholar
Hemingway, J., Jayawardena, K. G. I. & Herath, P. R. J. (in press). Pesticide resistance mechanisms produced by the field selection pressures on Anopheles nigerrimus and Anopheles culicifacies in Sri Lanka.—Bull. Wld Hlth Org.Google Scholar
Hemingway, J., Malcolm, C. A., Kissoon, K. E., Boddington, R. G..Curtis, C. F. & Hill, N. (1985). The biochemistry of insecticide resistance in Anopheles sacharovi: comparative studies with a range of insecticide susceptible and resistant Anopheles and Culex species.—Pestic. Biochem. & Physiol. 24, 6876.CrossRefGoogle Scholar
Kamimura, K. & Maruyama, Y. (1983). Appearance of highly resistant strain of Culex tritaeniorhynchus to organophosphorus insecticides.—Jap. J. sanit. Zool. 34, 3337.CrossRefGoogle Scholar
Lee, R. M. & Batham, P. (1966). The activity and organophosphate inhibition of cholinesterases from susceptible and resistant ticks (Acari).—Entomologia exp. appl. 9, 1324.CrossRefGoogle Scholar
Pasteur, N. & Sinègre, G. (1975). Esterase polymorphism and sensitivity to Dursban organophosphorus insecticide in Culex pipiens pipiens populations.—Biochem. Genet. 13, 789803.CrossRefGoogle ScholarPubMed
Raymond, M., Pasteur, N., Fournier, D., Cuany, A., Berge, J. & Magnin, M. (1985). Le gène dune acètylcholinèsterase insensible au propoxur détermine la résistance de Culex pipiens L. à cet insecticide.Cr. Acad. Sd.. Paris (III) 300, 509.Google Scholar