Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T11:37:33.307Z Has data issue: false hasContentIssue false

A Method of distinguishing the larval Stages of Agriotes sputator (L.) (Col., Elaterid.)

Published online by Cambridge University Press:  10 July 2009

Joan F. Basden
Affiliation:
Queen Mary College, University of London.

Extract

The different instars of Agriotes sputator larvae cannot be distinguished by measurements of total length or of various parts of the wireworm.

The number of teeth on the mesothoracic and abdominal spiracles increases with age, and an examination of 700 wireworms showed that the average numbers of teeth on the two thoracic or on all the abdominal spiracles fell into eight groups. These criteria were valid for populations collected at different times of the year.

The number of teeth on the thoracic spiracles of a larva in any particular group approximates to that on the abdominal spiracles of a larva in the next larger group.

The eight groups formed by counting either the thoracic or the abdominal spiracle teeth represent growth stages and not necessarily instars.

The larvae may sometimes moult without growth, a phenomenon probably caused by an inadequate supply of food. At such an ecdysis the number of spiracle teeth does not increase.

The larvae pupate after attaining an optimum size, and reach this size in seven or eight growth stages.

A quick method of determining the growth stage to which a larva belongs is given, whereby more than 80 per cent, of the larvae are placed in their correct growth stages by counting the teeth on one spiracle only ; for less than 1 per cent, of the larvae is it necessary to examine as many as five spiracles ; an accuracy of more than 97 per cent, can be maintained.

The possibility of determining the relationship of growth stage and age is discussed.

The division of the larvae into those which will pupate after seven, and those which will pupate after eight growth stages is apparent at a very early stage in the life history. One larva was found which appeared to be in its ninth growth stage.

The cause of this difference in growth stage number is unknown. It may be due to the size of the egg, to the time of the year at which hatching occurs, or to heredity.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1950

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Back, E. A. & Cotton, R. T. (1926). The Cadelle.—Dep. Bull. U.S. Dep. Agric., no. 1428, 41 pp.Google Scholar
Balachowsky, A. & Mesnil, L. (1935). Les insectes nuisibles aux plantes cultivées, 1, pp. 754764. Paris.Google Scholar
Decker, G. C. (1930). The biology of the Four-lined Borer, Luperina stipata (Morr.).—Res. Bull. Iowa agric. Exp. Sta., no. 125, pp. 125164.Google Scholar
Decker, G. C. (1931). The biology of the Stalk Borer Papaipema nebris (Gn.).—Res. Bull. Iowa agric. Exp. Sta., no. 143, pp. 291351.Google Scholar
Evans, A. C. & Gough, H. C. (1942). Observations on some factors influencing growth in wireworms of the genus Agriotes Esch.—Ann. appl. Biol., 29, pp. 168175.CrossRefGoogle Scholar
Ford, G. H. (1917). Observations on the larval and pupal stages of Agriotes obscurus Linn.Ann. appl. Biol., 3, p. 97.CrossRefGoogle Scholar
Gaines, J. C. & Campbell, F. L. (1935). Dyar's rule as related to the number of instars of the Corn Ear Worm, Heliothis obsoleta (Fab.) collected in the field.—Ann. ent. Soc. Amer., 28, pp. 445461.CrossRefGoogle Scholar
Von gierke, E. (1932). Über die Häutungen und die Entwicklungsgeschwindigkeit der Larven der Mehlmotte, Ephestia küniella Zeller.—Arch. EntwMech. Org., 127, pp. 387410.CrossRefGoogle Scholar
Good, N. (1933). Biology of the flour beetles, Tribolium confusum Duv. and T. ferrugineum Fab.J. agric. Res., 46, pp. 327334.Google Scholar
Guéniat, E. (1934). Contribution à l'étude du développement et de la morphologie de quelques Elatérides (Coléoptères).—Mitt. schweiz. ent. Ges., 16, pp. 167298.Google Scholar
Holloway, T. E., Haley, W. E. & Loftin, J. C. (1928). The Sugar-cane Moth Borer in the United States.—Tech. Bull. U.S. Dep. Agric., no. 41, 76 pp.Google Scholar
Horsfall, W. R. (1941). Biology of the Black Blister Beetle (Coleoptera: Meloidae).—Ann. ent. Soc. Amer., 34, pp. 114126.CrossRefGoogle Scholar
Klein, H. Z. (1932). Der Einfluss der Temperatur und Luftfeuchtigkeit auf Entwicklung und Mortalität von Pieris brassicae L.—Z. angew. Ent., 19, pp. 395448.CrossRefGoogle Scholar
Kreyenberg, J. (1929). Experimentell-biologische Untersuchungen über Dermestes lardarius L. und Dermestes vulpinus F.—Z. angew. Ent., 14, pp. 140188.CrossRefGoogle Scholar
Miles, H. W. (1931). Growth in the larvae of Tenthredinidae.—J. exp. Biol., 8, pp. 355364.CrossRefGoogle Scholar
Miles, M. (1933). Observations on growth in larvae of Plodia interpunctella (Hübn.).—Ann. appl. Biol., 20, pp. 297307.CrossRefGoogle Scholar
Parker, J. R. (1930). Some effects of temperature and moisture upon Melanoplus mexicanus mexicanus Sauss. and Camnula pellucida Scudder (Orthoptera).—Bull. Mont. agric. Exp. Sta., no. 223, 132 pp.Google Scholar
Potter, C. (1935). The biology and distribution of Rhizopertha dominica (Fab.).—Trans. R. ent. Soc. Lond., 83, pp. 449574.CrossRefGoogle Scholar
Richards, O. W. & Thomson, M. A. (1932). A contribution to the study of the genera Ephestia, Gn. (including Strymax Dyar) and Plodia, Gn. (Lepidoptera, Phycitidae), with notes on parasites of the larvae.—Trans. ent. Soc. Lond., 80, pp. 169250.CrossRefGoogle Scholar
Riley, C. V. (1883). Number of moults and length of larval life as influenced by food.—Amer. Nat., 17, pp. 547548.Google Scholar
Ripley, L. B. (1923). The external morphology and post-embryology of Noctuid larvae.—Ill. Biol. Monogr., 8, no. 4, 102 pp.Google Scholar
Rohwer, S. A. & Middleton, W. (1922). North American sawflies of the subfamily Cladinae.—Proc. U.S. nat. Mus., 60, pp. 146.CrossRefGoogle Scholar
Rymer Roberts, A. W. (1919). On the life history of “wireworms” of the genus Agriotes Esch. with some notes on that of Athous haemorrhoidalis F. I.—Ann. appl. Biol., 6, pp. 116135.CrossRefGoogle Scholar
Rymer Roberts, A. W. (1921). On the life history of “wireworms” of the genus Agriotes Esch. with some notes on that of Athous haemorrhoidalis F. II.—Ann. appl. Biol., 8, pp. 193215.CrossRefGoogle Scholar
Rymer Roberts, A. W. (1922). On the life history of “wireworms” of the genus Agriotes Esch. with some notes on that of Athous haemorrhoidalis F. III.—Ann. appl. Biol., 9, pp. 306324.CrossRefGoogle Scholar
Salt, G. & Hollick, F. S. J. (1944). Studies of wireworm populations. I. A census of wireworms in pasture.—Ann. appl. Biol., 31, pp. 5264.CrossRefGoogle Scholar
Satterthwait, A. F. (1933). Larval instars and feeding of the Black Cutworm, Agrotis ypsilon Roh.—J. agric. Res., 46, pp. 517530.Google Scholar
Stone, M. W. (1941). Life history of the Sugar Beet Wireworm in Southern California.—Tech. Bull. U.S. Dep. Agric., no. 744, 87 pp.Google Scholar
Subklew, W. (1934). Agriotes lineaus L. und Agriotes obscurus L. (Ein Beitrag zu ihrer Morphologie und Biologie).—Z. angew. Ent., 21, pp. 96122.CrossRefGoogle Scholar
Titschak, E. (1926). Untersuchungen über das Wachstum, den Nahrungsverbrauch und die Eierzeugung. II. Tineola bisselliella Hum. Gleichzeitig ein Beitrag zur Klärung der Insektenhäutung.—Z. wiss. Zool., 128, pp. 509569.Google Scholar
Waloff, N. (1948). Development of Ephestia elutella, Hb. (Lep., Phycitidae) on some natural foods.—Bull. ent. Res., 39, pp. 117130.CrossRefGoogle Scholar
Wodsedalek, J. E. (1912). Life history and habits of Trogoderma tarsale (Melsh.), a museum pest.—Ann. ent. Soc. Amer., 5, pp. 367382.CrossRefGoogle Scholar
Wodsedalek, J. E. (1917). Five years of starvation of larvae.—Science, (N.S.) 46, pp. 366367.CrossRefGoogle ScholarPubMed