Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T22:03:32.013Z Has data issue: false hasContentIssue false

Molecular differentiation of four Reptalus species (Hemiptera: Cixiidae)

Published online by Cambridge University Press:  17 February 2010

S. Bertin
Affiliation:
DIVAPRA – Entomologia e Zoologia applicate all'Ambiente ‘Carlo Vidano’, Università di Torino, Via L. da Vinci 44, 10095Grugliasco (TO), Italy
L. Picciau
Affiliation:
DIVAPRA – Entomologia e Zoologia applicate all'Ambiente ‘Carlo Vidano’, Università di Torino, Via L. da Vinci 44, 10095Grugliasco (TO), Italy
Z. Ács
Affiliation:
Fitolab Plant Pest Diagnostic and Advisory Ltd.Istenhegyi út 29, BudapestH-1125, Hungary
A. Alma
Affiliation:
DIVAPRA – Entomologia e Zoologia applicate all'Ambiente ‘Carlo Vidano’, Università di Torino, Via L. da Vinci 44, 10095Grugliasco (TO), Italy
D. Bosco*
Affiliation:
DIVAPRA – Entomologia e Zoologia applicate all'Ambiente ‘Carlo Vidano’, Università di Torino, Via L. da Vinci 44, 10095Grugliasco (TO), Italy
*
*Author for correspondence Fax: 39 011 6708535 E-mail: domenico.bosco@unito.it

Abstract

The cixiid species Reptalus quinquecostatus, R. cuspidatus, R. panzeri and R. melanochaetus are widely distributed in Europe and are receiving growing attention because of their potential role as phytoplasma vectors. Identifying the Reptalus species is restricted to a few specialist entomologists and relies on the morphology of the male genitalia, hampering the identification of juveniles and females. This study provides the tools for species discrimination by integrating the morphological description, which is primarily for the genus identification, with new molecular assays, based on both ribosomal and mitochondrial DNA. PCR-RFLP assays carried out on the mitochondrial cytochrome oxidase I gene (COI) with AluI provided species-specific profiles for the four Reptalus species. Amplification of a ribosomal internal transcribed spacer (ITS2) region produced species-specific fragments of different sizes for R. quinquecostatus, R. melanochaetus, R. cuspidatus and R. panzeri. The digestion of the ITS2 PCR product with TaqI allowed the discrimination of these latter two species. This molecular identification key ensures reliable results and can be successfully applied not only to adults, but also to the nymphs feeding on the roots. The identification of the nymphs (i) extends the collection period of these monovoltine species to the whole year (adults are present for a short summer period) and (ii) allows the unambiguous identification of their actual host plants because nymphs are steady on the root system while adults tend to disperse onto other plants. Fast and reliable identification of the Reptalus species provides useful help in monitoring activities and, therefore, in designing rational control strategies to protect crops from phytoplasma infection.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Behere, G.T., Tay, W.T., Russell, D.A. & Batterham, P. (2008) Molecular markers to discriminate among four pest species of Helicoverpa (Lepidoptera: Noctuidae). Bulletin of Entomological Research 98, 599603.CrossRefGoogle ScholarPubMed
Bosco, D., Palermo, S., Mason, G., Tedeschi, R., Marzachì, C. & Boccardo, G. (2002) DNA-based methods for the detection and the identification of phytoplasmas in insect vector extracts. Molecular Biotechnology 22, 9–18.CrossRefGoogle ScholarPubMed
Bressan, A., Sémétey, O., Nusillard, B., Clair, D. & Boudon-Padieu, E. (2008) Insect vectors (Hemiptera: Cixiidae) and pathogens associated with the disease syndrome ‘basses richesses’ of sugar beet in France. Plant disease 92, 113119.CrossRefGoogle ScholarPubMed
Březíková, M. & Linhartová, S. (2007) First report of potato stolbur phytoplasma in Hemipterans in southern Moravia. Plant Protection Science 43, 7376.CrossRefGoogle Scholar
Ceotto, P.C. & Bourgoin, T. (2008) Insights into the phylogenetic relationships within Cixiidae (Hemiptera: Fulgoromorpha): cladistic analysis of a morphological data set. Systematic Entomology 33, 484500.CrossRefGoogle Scholar
Ceotto, P.C., Kergoat, G.J., Rasplus, J.Y. & Bourgoin, T. (2008) Molecular phylogenetics of cixiid planthoppers (Hemiptera: Fulgoromorpha): New insights from combined analyses of mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution 48, 667678.CrossRefGoogle ScholarPubMed
Collins, F.H. & Paskewitz, S.M. (1996) A review of the use of ribosomal DNA (rDNA) to differentiate among cryptic Anopheles species. Insect Molecular Biology 5, 19.CrossRefGoogle ScholarPubMed
Danet, J.L., Foissac, X., Zreik, L., Salar, P., Verdin, E., Nourrisseau, J.G. & Garnier, M. (2003) Candidatus phlomobacter fragariae’ is the prevalent agent of marginal chlorosis of strawberry in French production fields and is transmitted by the planthopper Cixius wagneri (China). Phytopathology 93, 644649.CrossRefGoogle ScholarPubMed
Duduk, B. & Bertaccini, A. (2006) Corn with symptoms of reddening: new host of stolbur phytoplasma. Plant Disease 90, 13131319.CrossRefGoogle ScholarPubMed
Hebert, P.D.N. & Gregory, T.R. (2005) The promise of DNA barcoding for taxonomy. Systematic Biology 54, 852859.CrossRefGoogle ScholarPubMed
Hebert, P.D.N., Cywinska, A., Ball, S.L. & deWaard, J.R. (2003) Biological identification through DNA barcodes. Proceedings of the Royal Society of London, Series B 270, 313321.CrossRefGoogle ScholarPubMed
Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H. & Hallwachs, W. (2004) Ten species in one: DNA barcoding reveals cryptic species in neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Science 101, 1481214817.CrossRefGoogle ScholarPubMed
Hoch, H. (2004) Fauna Europaea: Cixiidae, Reptalus. Fauna Europaea version 1.1, available online at http://www.faunaeur.org.Google Scholar
Hogg, I.D. & Hebert, P.D.N. (2004) Biological identification of springtails (Hexapoda: Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes. Canadian Journal of Zoology 82, 749754.CrossRefGoogle Scholar
Holzinger, W.E., Kammerlander, I. & Nickel, H. (2003) The Auchenorrhyncha of Central Europe – Die Ziekaden Mitteleuropas Volume 1: Fulgoromoropha, Cicadomorpha excl. Cicadellidae. 673 pp. Leiden, The Netherlands, Brill.CrossRefGoogle Scholar
Jović, J., Cvrković, T., Mitrović, M., Krnjajić, S., Redinbaugh, M.G., Pratt, R.C., Gingery, R.E., Hogenhout, S.A. & Toševski, I. (2007) Roles of stolbur phytoplasma and Reptalus panzeri (Cixiinae, Auchenorrhyncha) in the epidemiology of Maize redness in Serbia. European Journal of Plant Pathology 118, 8589.CrossRefGoogle Scholar
Julia, J.F., Dollet, M., Randles, J. & Calvez, C. (1985) Foliar decay of coconut by Myndus taffini (FDMT): new results. Oléagineux 40, 1927.Google Scholar
Koekemoer, L.L., Misiani, E.A., Hunt, R.H., Kent, R.J., Norris, D.E. & Coetzee, M. (2009) Cryptic species within Anopheles longipalpis from southern Africa and phylogenetic comparison with members of the An. funestus group. Bulletin of Entomological Research 99, 4149.CrossRefGoogle ScholarPubMed
Li, Z.-X. (2007) Molecular differentiation of the four most commonly occurring Trichogramma (Hymenoptera: Trichogrammatidae) species in China. European Journal of Entomology 104, 363367.CrossRefGoogle Scholar
Maixner, M. (2006) Grapevine yellows – Current developments and unsolved questions. In Proceedings of the 15th meeting of the International Council for the Study of Virus and Virus-like Diseases of the Grapevine (ICVG), Stellenbosch, South Africa, 3–7 April 2006. Available online at http://www.icvg.ch/data/maixner.pdf.Google Scholar
Mazzoni, V. (2005) Contribution to the knowledge of the Auchenorrhyncha (Hemiptera Fulgoromorpha and Cicadomorpha) of Tuscany (Italy). Redia 88, 85–102.Google Scholar
O'Brien, L.B. & Wilson, S.W. (1985) Planthopper systematics and external morphology. pp. 61–102 in Nault, L.R. & Rodriguez, J.G. (Eds) The Leafhoppers and Planthoppers. New York, NY, USA, John Wiley and Sons.Google Scholar
Ossiannilsson, F. (1978) The Auchenorrhyncha (Homoptera) of Fennoscandia and Denmark. Part 1: introduction, infraorder Fulgoromorpha. 222 pp. Klampenborg, Denmark, Scandinavian Science Press Ltd.Google Scholar
Palermo, S., Elekes, M., Botti, S., Ember, I., Alma, A., Orosz, A., Bertaccini, A. & Kölber, M. (2004) Presence of stolbur phytoplasma in Cixiidae in Hungarian vineyards. Vitis 43, 201203.Google Scholar
Pinzauti, F., Trivellone, V. & Bagnoli, B. (2008) Ability of Reptalus quinquecostatus (Hemiptera: Cixiidae) to inoculate stolbur phytoplasma to artificial feeding medium. Annals of Applied Biology 153, 299305.CrossRefGoogle Scholar
Riedle-Bauer, M., Tiefenbrunner, W., Otreba, J., Hanak, K., Schildberger, B. & Regner, F. (2006) Epidemiological observations on bois noir in Austrian vineyards. Mitteilungen Klosterneuburg, Rebe und Wein, Obstbau und Früchteverwertung 56, 166170.Google Scholar
Roe, A.D. & Sperling, F.A.H. (2007) Population structure and species boundary delimitation of cryptic Dioryctria moths: an integrative approach. Molecular Ecology 16, 36173633.CrossRefGoogle ScholarPubMed
Sforza, R. & Bourgoin, T. (1998) Female genitalia and copulation of the planthopper Hyalesthes obsoletus Signoret (Hemiptera, Fulgoromorpha, Cixiidae). Annales de la Société Entomologique de France (N.S.) 34, 6370.CrossRefGoogle Scholar
Sforza, R., Clair, D., Daire, X., Larrue, J. & Boudon-Padieu, E. (1998) The role of Hyalesthes obsoletus (Hemiptera: Cixiidae) in the occurrence of bois noir of grapevines in France. Journal of Phytopathology 146, 549556.CrossRefGoogle Scholar
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. (1994) Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of Entomological Society of America 87, 651701.CrossRefGoogle Scholar
Sinclair, C.S. & Gresens, S.E. (2008) Discrimination of Cricotopus species (Diptera: Chironomidae) by DNA barcoding. Bulletin of Entomological Research 98, 555563.CrossRefGoogle ScholarPubMed
Smith, M.A., Fisher, B.L. & Hebert, P.D.N. (2005) DNA barcoding for effective diversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philosophical Transactions of the Royal Society of London, Series B 360, 18251834.CrossRefGoogle Scholar
Trivellone, V., Pinzauti, F. & Bagnoli, B. (2005) Reptalus quinquecostatus (Dufour) (Auchenorrhyncha Cixiidae) as a possible vector of Stolbur-phytoplasma in a vineyard in Tuscany. Redia 88, 103108.Google Scholar
Weintraub, P.J. & Beanland, L. (2006) Insect vectors of phytoplasmas. Annual Review of Entomology 51, 91–111.CrossRefGoogle ScholarPubMed
Wilson, S.W. (2005) Keys to the families of Fulgoromorpha with emphasis on planthoppers of potential economic importance in the south-eastern United States (Hemiptera: Auchenorrhyncha). Florida Entomologist 88, 464481.CrossRefGoogle Scholar
Wilson, S.W. & Tsai, J.H. (1982) Descriptions of the immature stages of Myndus crudus (Homoptera: Fulgoroidea: Cixiidae). Journal of the New York Entomological Society 90, 166175.Google Scholar
Wilson, S.W., Mitter, C., Denno, R.F. & Wilson, M.R. (1994) Evolutionary patterns of host plant use by delphacid planthoppers and their relatives. pp. 7–45 in Denno, R.F. & Perfect, T.J. (Eds) Planthoppers: Their Ecology and Management. New York, NY, USA, Chapman and Hall.CrossRefGoogle Scholar