Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-01T05:24:50.468Z Has data issue: false hasContentIssue false

Considering climate change impact on the global potential geographical distribution of the invasive Argentine ant and little fire ant

Published online by Cambridge University Press:  16 May 2024

Tong Li
Affiliation:
Department of Plant Biosecurity, Key Laboratory of Surveillance and Management for Plant Quarantine Pests of MARA, College of Plant Protection, China Agricultural University, Beijing, P. R. China
Pei Jiang
Affiliation:
National Agro-tech Extension and Service Center, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
Jingyuan Liu
Affiliation:
Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs District, Shanghai, 200135, China
Jingquan Zhu
Affiliation:
National Agro-tech Extension and Service Center, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
Shouqi Zhao
Affiliation:
National Agro-tech Extension and Service Center, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
Zhihong Li
Affiliation:
Department of Plant Biosecurity, Key Laboratory of Surveillance and Management for Plant Quarantine Pests of MARA, College of Plant Protection, China Agricultural University, Beijing, P. R. China
Mina Zhong
Affiliation:
Forest Pest Control and Quarantine Station of Xining City, Qinghai, 810008, China
Chen Ma*
Affiliation:
National Agro-tech Extension and Service Center, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
Yujia Qin*
Affiliation:
Department of Plant Biosecurity, Key Laboratory of Surveillance and Management for Plant Quarantine Pests of MARA, College of Plant Protection, China Agricultural University, Beijing, P. R. China
*
Corresponding author: Yujia Qin; Email: qinyujia@cau.edu.cn; Chen Ma; Email: macfov@hotmail.com
Corresponding author: Yujia Qin; Email: qinyujia@cau.edu.cn; Chen Ma; Email: macfov@hotmail.com

Abstract

The Argentine ant (Linepithema humile) and the little fire ant (Wasmannia auropunctata) are among the top 100 invasive alien species globally, causing significant ecological and economic harm. Therefore, it is crucial to study their potential geographic distribution worldwide. This study aimed to predict their global distribution under current and future climate conditions. We used distribution data from various sources, including CABI, GBIF, and PIAKey, and key climate variables selected from 19 environmental factors to model their potential geographic distribution using MaxEnt. The AUC values were 0.925 and 0.937 for L. humile and W. auropunctata, respectively, indicating good predictive performance. Suitable areas for L. humile were mainly in southern North America, northern South America, Europe, central Asia, southern Oceania, and parts of Africa, while W. auropunctata suitable areas were mostly in southern North America, most of South America, a small part of Europe, southern Asia, central Africa, and some parts of Oceania. Under climate change scenario, suitable areas for L. humile increased, while highly suitable areas for W. auropunctata decreased. The top four countries with the largest areas of overlapping suitable habitat under current climate were Brazil, China, Australia, and Argentina, while under future SSP585 climate scenario, the top four countries were Brazil, China, Indonesia, and Argentina. Some countries, such as Estonia and Finland, will see an overlapping adaptation area under climate change. In conclusion, this study provides insight into controlling the spread and harm of L. humile and W. auropunctata.

Type
Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ar, B, Tuttu, G, Gulcin, D, Ozcan, AU, Kara, E, Surmen, M, Cicek, K and Velazquez, J (2022) Response of an invasive plant species (Cynanchum acutum L.) to changing climate conditions and its impact on agricultural landscapes. Land 11, 1438.CrossRefGoogle Scholar
Bertelsmeier, C, Avril, A, Blight, O, Confais, A, Diez, L, Jourdan, H, Orivel, J, St Germes, N and Courchamp, F (2015a) Different behavioural strategies among seven highly invasive ant species. Biological Invasions 17, 24912503.CrossRefGoogle Scholar
Bertelsmeier, C, Avril, A, Blight, O, Jourdan, H and Courchamp, F (2015b) Discovery-dominance trade-off among widespread invasive ant species. Ecology and Evolution 5, 26732683.CrossRefGoogle ScholarPubMed
Bertelsmeier, C, Ollier, S, Avril, A, Blight, O, Jourdan, H and Courchamp, F (2016) Colony-colony interactions between highly invasive ants. Basic and Applied Ecology 17, 106114.CrossRefGoogle Scholar
Bradie, J and Leung, B (2017) A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. Journal of Biogeography 44, 13441361.CrossRefGoogle Scholar
Brightwell, RJ, Labadie, PE and Silverman, J (2010) Northward expansion of the invasive Linepithema humile (Hymenoptera: Formicidae) in the Eastern United States is constrained by winter soil temperatures. Environmental Entomology 39, 16591665.CrossRefGoogle ScholarPubMed
CABI Compendium (2022a) Cabicompendium.30839, doi: 10.1079/cabicompendium.30839, CABI International, Linepithema humile (Argentine ant).Google Scholar
CABI Compendium (2022b) Cabicompendium.56704, doi: 10.1079/cabicompendium.56704, CABI International, Wasmannia auropunctata (little fire ant).Google Scholar
Calcaterra, L, Cabrera, S and Briano, J (2016) Local co-occurrence of several highly invasive ants in their native range: are they all ecologically dominant species? Insectes Sociaux 63, 407419.CrossRefGoogle Scholar
Carpintero, S, Reyes-Lopez, J and De Reyna, LA (2005) Impact of Argentine ants (Linepithema humile) on an arboreal ant community in Donana National Park, Spain. Biodiversity and Conservation 14, 151163.CrossRefGoogle Scholar
Chifflet, L, Rodriguero, MS, Calcaterra, LA, Rey, O, Dinghi, PA, Baccaro, FB, Souza, JLP, Follett, P and Confalonieri, VA (2016) Evolutionary history of the little fire ant Wasmannia auropunctata before global invasion: inferring dispersal patterns, niche requirements and past and present distribution within its native range. Journal of Evolutionary Biology 29, 790809.CrossRefGoogle ScholarPubMed
Coulin, C, de la Vega, GJ, Chifflet, L, Calcaterra, LA and Schilman, PE (2019) Linking thermo-tolerances of the highly invasive ant, Wasmannia auropunctata, to its current and potential distribution. Biological Invasions 21, 34913504.CrossRefGoogle Scholar
Cuthbert, RN, Diagne, C, Haubrock, PJ, Turbelin, AJ and Courchamp, F (2022) Are the ‘100 of the world's worst’ invasive species also the costliest? Biological Invasions 24, 18951904.CrossRefGoogle Scholar
Dai, X, Wu, W, Ji, L, Tian, S, Yang, B, Guan, B and Wu, D (2022) MaxEnt model-based prediction of potential distributions of Parnassia wightiana (Celastraceae) in China. Biodiversity Data Journal 10, e81073.CrossRefGoogle Scholar
da Silva Galdino, TV, Kumar, S, Oliveira, LSS, Alfenas, AC, Neven, LG, Al-Sadi, AM and Picanco, MC (2016). Mapping global potential risk of mango sudden decline disease caused by Ceratocystis fimbriata. Plos One 11, e0159450.CrossRefGoogle Scholar
Ellis, BR, Benson, EP, Zungoli, PA and Bridges, WC (2008) Evaluation of chemical control strategies for Linepithema humile (Mayr) (Hymenoptera: Formicidae) in South Carolina State Park Campgrounds. Journal of Agricultural and Urban Entomology 25, 223232.CrossRefGoogle Scholar
Follett, PA, Porcel, S and Calcaterra, LA (2016) Effect of irradiation on queen survivorship and reproduction in the invasive fire ant Solenopsis invicta (Hymenoptera: Formicidae) and a proposed phytosanitary irradiation treatment for ants. Journal of Economic Entomology 109, 23482354.CrossRefGoogle Scholar
Foucaud, J, Orivel, J, Fournier, D, Delabie, JHC, Loiseau, A, Le Breton, J, Cerdan, P and Estoup, A (2009) Reproductive system, social organization, human disturbance and ecological dominance in native populations of the little fire ant, Wasmannia auropunctata. Molecular Ecology 18, 50595073.CrossRefGoogle ScholarPubMed
Geng, W, Li, Y, Sun, D, Li, B, Zhang, P, Chang, H, Rong, T, Liu, Y, Shao, J, Liu, Z, Zhu, H, Lou, Y, Wang, Q and Zhang, J (2022) Prediction of the potential geographical distribution of Betula platyphylla Suk. in China under climate change scenarios. PloS one 17, e0262540.CrossRefGoogle Scholar
Gómez, C and Abril, S (2022) ‘Linepithema humile (Argentine ant)’, CABI Compendium. CABI International. Retrieved from https://doi.org/10.1079/cabicompendium.30839CrossRefGoogle Scholar
Gunawardana, D and Wetterer, JK (2022) ‘Wasmannia auropunctata (little fire ant)’, CABI Compendium. CABI International. Retrieved from https://doi.org/10.1079/cabicompendium.56704CrossRefGoogle Scholar
Hara, AH, Cabral, SK, Niino-Duponte, RY, Jacobsen, CM and Onuma, K (2011) Bait insecticides and hot water drenches against the little fire Ant, Wasmannia Auropunctata (hymenoptera: Formicidae), infesting containerized nursery plants. Florida Entomologist 94, 517526.CrossRefGoogle Scholar
Harris, RJ and Barker, G (2007) Relative risk of invasive ants (Hymenoptera: Formicidae) establishing in New Zealand. New Zealand Journal of Zoology 34, 161178.CrossRefGoogle Scholar
Helms, KR (2013) Mutualisms between ants (Hymenoptera: Formicidae) and honeydew-producing insects: are they important in ant invasions. Myrmecological News 18, 6171.Google Scholar
Holway, DA, Lach, L, Suarez, AV, Tsutsui, ND and Case, TJ (2002) The causes and consequences of ant invasions. Annual Review of Ecology and Systematics 33, 181233.CrossRefGoogle Scholar
Huang, Y, Luo, X and Li, Z (2022) Substitution or complementarity: why do rice farmers use a mix of biopesticides and chemical pesticides in China? Pest Management Science 78, 16301639.CrossRefGoogle ScholarPubMed
Huercha, , Song, R, Ma, Y, Hu, Z, Li, Y, Li, M, Wu, L, Li, C, Dao, E, Fan, X, Hao, Y and Bayin, C (2020). MaxEnt modeling of Dermacentor marginatus (Acari: Ixodidae) distribution in Xinjiang, China. Journal of Medical Entomology 57, 16591667.CrossRefGoogle Scholar
Jumbam, KR, Jackson, S, Terblanche, JS, McGeoch, MA and Chown, SL (2008) Acclimation effects on critical and lethal thermal limits of workers of the Argentine ant, Linepithema humile. Journal of Insect Physiology 54, 10081014.CrossRefGoogle ScholarPubMed
Jung, JM, Kim, SH, Jung, S and Lee, WH (2022) Spatial and climatic analyses for predicting potential distribution of an invasive ant, Linepithema humile (Hymenoptera: Formicidae). Entomological Science 25, e12527.CrossRefGoogle Scholar
Krushelnycky, PD and Gillespie, RG (2008) Compositional and functional stability of arthropod communities in the face of ant invasions. Ecological Applications 18, 15471562.CrossRefGoogle ScholarPubMed
Krushelnycky, PD, Joe, SM, Medeiros, AC, Daehler, CC and Loope, LL (2005) The role of abiotic conditions in shaping the long-term patterns of a high-elevation Argentine ant invasion. Diversity and Distributions 11, 319331.CrossRefGoogle Scholar
Kumar, S, LeBrun, EG, Stohlgren, TJ, Stabach, JA, McDonald, DL, Oi, DH and LaPolla, JS (2015) Evidence of niche shift and global invasion potential of the Tawny Crazy ant, Nylanderia fulva. Ecology and Evolution 5, 46284641.CrossRefGoogle ScholarPubMed
Kumari, P, Jasrotia, P, Kumar, D, Kashyap, PL, Kumar, S, Mishra, CN, Kumar, S and Singh, GP (2022) Biotechnological approaches for host plant resistance to insect pests. Frontiers in Genetics 13, 914029.CrossRefGoogle ScholarPubMed
Lee, DJ, Motoki, M, Vanderwoude, C, Nakamoto, ST and Leung, P (2015) Taking the sting out of little fire ant in Hawaii. Ecological Economics 111, 100110.CrossRefGoogle Scholar
Lee, CM, Lee, D-S, Kwon, T-S, Athar, M and Park, Y-S (2021) Predicting the global distribution of Solenopsis geminata (Hymenoptera: Formicidae) under climate change using the MaxEnt model. Insects 12, 229.CrossRefGoogle ScholarPubMed
Lester, PJ and Gruber, MAM (2016) Booms, busts and population collapses in invasive ants. Biological Invasions 18, 30913101.CrossRefGoogle Scholar
Li, Y and Ding, C (2016) Effects of sample size, sample accuracy and environmental variables on predictive performance of MaxEnt model. Polish Journal of Ecology 64, 303312.CrossRefGoogle Scholar
Li, M, Xian, X, Zhao, H, Xue, L, Chen, B, Huang, H, Wan, F and Liu, W (2022) Predicting the potential suitable area of the invasive Ant Linepithema humile in China under future climatic scenarios based on optimized MaxEnt. Diversity-Basel 14, 921.CrossRefGoogle Scholar
Liu, L, Zhang, Y, Huang, Y, Zhang, J, Mou, Q, Qiu, J, Wang, R, Li, Y and Zhang, D (2022) Simulation of potential suitable distribution of original species of Fritillariae Cirrhosae Bulbus in China under climate change scenarios. Environmental Science and Pollution Research 29, 2223722250.CrossRefGoogle Scholar
Lopez-Collar, D and Cabrero-Sanudo, FJ (2021) Update on the invasion status of the Argentine ant, Linepithema humile (Mayr, 1868), in Madrid, a large city in the interior of the Iberian Peninsula. Journal of Hymenoptera Research 85, 161177.CrossRefGoogle Scholar
Mao, M, Chen, S, Ke, Z, Qian, Z and Xu, Y (2022) Using MaxEnt to predict the potential distribution of the little fire ant (Wasmannia auropunctata) in China. Insects 13, 1008.CrossRefGoogle ScholarPubMed
Mbenoun Masse, PS, Tindo, M, Djieto-Lordon, C, Mony, R and Kenne, M (2019). Diversity of ant assemblages (Hymenoptera: Formicidae) in an urban environment in Cameroon during and after colonization of the area by Wasmannia auropunctata. European Journal of Entomology 116, 461467.CrossRefGoogle Scholar
Montgomery, MP, Vanderwoude, C, Lintermans, M and Lynch, AJ (2022) The little fire ant (Hymenoptera: Formicidae): a global perspective. Annals of the Entomological Society of America 115, 427448.CrossRefGoogle Scholar
Mothapo, NP and Wossler, TC (2014) Resource competition assays between the African big-headed ant, Pheidole megacephala (Fabricius) and the invasive Argentine ant, Linepithema humile (Mayr): mechanisms of inter-specific displacement. Ecological Entomology 39, 501510.CrossRefGoogle Scholar
Nelson, RA, MacArthur-Waltz, DJ and Gordon, DM (2023) Critical thermal limits and temperature-dependent walking speed may mediate coexistence between the native winter ant (Prenolepis imparis) and the invasive Argentine ant (Linepithema humile). Journal of Thermal Biology 111, 103392.CrossRefGoogle ScholarPubMed
Ness, JH and Bronstein, IL (2004) The effects of invasive ants on prospective ant mutualists. Biological Invasions 6, 445461.CrossRefGoogle Scholar
O'Neill, BC, Kriegler, E, Ebi, KL, Kemp-Benedict, E, Riahi, K, Rothman, DS, van Ruijven, BJ, van Vuuren, DP, Birkmann, J, Kok, K, Levy, M and Solecki, W (2017) The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change 42, 169180.CrossRefGoogle Scholar
Pejchar, L and Mooney, HA (2009) Invasive species, ecosystem services and human well-being. Trends in Ecology & Evolution 24, 497504.CrossRefGoogle ScholarPubMed
Peterson, AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. Quarterly Review of Biology 78, 419433.CrossRefGoogle ScholarPubMed
Pratt, CF, Constantine, KL and Murphy, ST (2017) Economic impacts of invasive alien species on African smallholder livelihoods. Global Food Security-Agriculture Policy Economics and Environment 14, 3137.CrossRefGoogle Scholar
Pysek, P, Hulme, PE, Simberloff, D, Bacher, S, Blackburn, TM, Carlton, JT, Dawson, W, Essl, F, Foxcroft, LC, Genovesi, P, Jeschke, JM, Kuehn, I, Liebhold, AM, Mandrak, NE, Meyerson, LA, Pauchard, A, Pergl, J, Roy, HE, Seebens, H, van Kleunen, M, Vila, M, Wingfield, MJ and Richardson, DM (2020) Scientists’ warning on invasive alien species. Biological Reviews 95, 15111534.CrossRefGoogle ScholarPubMed
Roura-Pascual, N, Bas, JM, Thuiller, W, Hui, C, Krug, RM and Brotons, L (2009) From introduction to equilibrium: reconstructing the invasive pathways of the Argentine ant in a Mediterranean region. Global Change Biology 15, 21012115.CrossRefGoogle Scholar
Sanders, NJ and Suarez, AV (2011) Elton's insights into the ecology of ant invasions: lessons learned and lessons still to be learned. In Richardson DM (ed.), Fifty Years of Invasion Ecology: The Legacy of Charles Elton, 1st Edn. Chichester, West Sussex, UK: Blackwell Publishing Ltd, pp. 239251.Google Scholar
Sanmartin-Villar, I, Csata, E and Jeanson, R (2021) Variability in activity differs between castes in the ant Linepithema humile. Ecological Entomology 46, 13731378.CrossRefGoogle Scholar
Sarnat, EM (2008) PIAkey: Identification guide to ants of the Pacific Islands, Edition 2.0, Lucid v. 3.4. USDA/APHIS/PPQ Center for Plant Health Science and Technology and University of California — Davis. Available at http://idtools.org/id/ants/pia/Google Scholar
Schilman, PE, Lighton, JRB and Holway, DA (2007) Water balance in the Argentine ant (Linepithema humile) compared with five common native ant species from southern California. Physiological Entomology 32, 17.CrossRefGoogle Scholar
Shi, J, Luo, Y-Q, Zhou, F and He, P (2010) The relationship between invasive alien species and main climatic zones. Biodiversity and Conservation 19, 24852500.CrossRefGoogle Scholar
Si-qi, CHEN, Yi, ZHaO, Yong-yue, LU, Hao, RaN and Yi-juan, XU (2022). First record of the little fire ant, Wasmannia auropunctata (Hymenoptera: Formicidae), in Chinese mainland. Journal of Integrative Agriculture 21, 18251829.CrossRefGoogle Scholar
Silverman, J and Buczkowski, G (2016) 13 Behaviours mediating ant invasions. In Sweis J and Sol D (eds), Biological Invasions and Animal Behaviour. Cambridge, UK: Cambridge University Press, pp. 221224.CrossRefGoogle Scholar
Sopniewski, J, Scheele, BC and Cardillo, M (2022) Predicting the distribution of Australian frogs and their overlap with Batrachochytrium dendrobatidis under climate change. Diversity and Distributions 28, 12551268.CrossRefGoogle Scholar
Souza, E, Follett, PA, Price, DK and Stacy, EA (2008) Field suppression of the invasive ant Wasmannia auropunctata (Hymenoptera: Formicidae) in a tropical fruit orchard in Hawaii. Journal of Economic Entomology 101, 10681074.CrossRefGoogle Scholar
Suhr, EL, O'Dowd, DJ, Suarez, A, Cassey, P, Wittmann, TA, Ross, J and Cope, RC (2019) Ant interceptions reveal roles of transport and commodity in identifying biosecurity risk pathways into Australia. Neobiota 53, 124.CrossRefGoogle Scholar
Suiter, DR, Gochnour, BM, Holloway, JB and Vail, KM (2021) Alternative methods of ant (Hymenoptera: Formicidae) control with emphasis on the Argentine ant, Linepithema humile. Insects 12, 487.CrossRefGoogle ScholarPubMed
Teles, WS, Silva, DdeP, Vilela, B, Lima-Junior, DP, Pires-Oliveira, JC and Miranda, MS (2022). How will the distributions of native and invasive species be affected by climate change? Insights from Giant South American Land Snails. Diversity-Basel 14, 467.Google Scholar
Verlinden, M, De Boeck, HJ and Nijs, I (2014) Climate warming alters competition between two highly invasive alien plant species and dominant native competitors. Weed Research 54, 234244.CrossRefGoogle Scholar
Vogel, V, Pedersen, JS, Giraud, T, Krieger, MJB and Keller, L (2010) The worldwide expansion of the Argentine ant. Diversity and Distributions 16, 170186.CrossRefGoogle Scholar
Vonshak, M, Dayan, T, Ionescu-Hirsh, A, Freidberg, A and Hefetz, A (2010) The little fire ant Wasmannia auropunctata: a new invasive species in the Middle East and its impact on the local arthropod fauna. Biological Invasions 12, 18251837.CrossRefGoogle Scholar
Walters, AC and Mackay, DA (2005) Importance of large colony size for successful invasion by Argentine ants (Hymenoptera: Formicidae): evidence for biotic resistance by native ants. Austral Ecology 30, 395406.CrossRefGoogle Scholar
Warren, DL and Seifert, SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications 21, 335342.CrossRefGoogle ScholarPubMed
Wetterer, JK and Porter, SD (2003) The little fire ant, Wasmannia auropunctata: distribution, impact, and control. Sociobiology 42, 141.Google Scholar
Wild, AL (2004) Taxonomy and distribution of the Argentine ant, Linepithema humile (Hymenoptera: Formicidae). Annals of the Entomological Society of America 97, 12041215.CrossRefGoogle Scholar
Wu, T, Lu, Y, Fang, Y, Xin, X, Li, L, Li, W, Jie, W, Zhang, J, Liu, Y, Zhang, L, Zhang, F, Zhang, Y, Wu, F, Li, J, Chu, M, Wang, Z, Shi, X, Liu, X, Wei, M, Huang, A, Zhang, Y and Liu, X (2019) The Beijing climate center climate system model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geoscientific Model Development 12, 15731600.CrossRefGoogle Scholar
Zhang, Y, Hughes, AC, Zhao, Z, Li, Z and Qin, Y (2022) Including climate change to predict the global suitable area of an invasive pest: Bactrocera correcta (Diptera: Tephritidae). Global Ecology and Conservation 34, e02021.CrossRefGoogle Scholar
Zhang, Z, Chen, L, Zhang, X and Li, Q (2023) Prediction of the potential distributions of Prunus salicina Lindl., Monilinia fructicola, and their overlap in China using MaxEnt. Journal of Fungi 9, 189.CrossRefGoogle Scholar
Zhao, R, Chu, X, He, Q, Tang, Y, Song, M and Zhu, Z (2020) Modeling current and future potential geographical distribution of Carpinus tientaiensis, a critically endangered species from China. Forests 11, 774.CrossRefGoogle Scholar
Zhao, H, Xian, X, Guo, J, Yang, N, Zhang, A, Chen, B, Huang, H and Liu, W (2022) Monitoring the little fire ant, Wasmannia auropunctata (Roger 1863), in the early stage of its invasion in China: predicting its geographical distribution pattern under climate change. Journal of Integrative Agriculture 22, 27832795.CrossRefGoogle Scholar
Zhu, G-L, Tang, Y-Y, Limpanont, Y, Wu, Z-D, Li, J and Lv, Z-Y (2019) Zoonotic parasites carried by invasive alien species in China. Infectious Diseases of Poverty 8, 2.CrossRefGoogle ScholarPubMed